【題目】若3m=2,3n=4,則3m+n=__________;
科目:初中數學 來源: 題型:
【題目】下列結論中錯誤的是( 。
A. 三角形的內角和等于180°
B. 三角形的外角和小于四邊形的外角和
C. 五邊形的內角和等于540°
D. 正六邊形的一個內角等于120°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】李先生乘出租車去某公司辦事,下車時,打出的電子收費單為“里程11千米,應收29.10元”.該城市的出租車收費標準如下表所示,請求出起步價N(N<12).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一天晚上,身高1.6米的小明站在路燈下,發(fā)現自己的影子恰好是4塊地磚的長(每塊地磚為邊長0.5米的正方形).當他沿著影子的方向走了4塊地磚時,發(fā)現自己的影子恰好是5塊地磚的長,根據這個發(fā)現,他就算出了路燈的高度,你知道他是怎么算的嗎?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知銳角△ABC中,CD、BE分別是AB、AC邊上的高,M、N分別是線段BC、DE的中點.
(1)求證:MN⊥DE.
(2)連結DM,ME,猜想∠A與∠DME之間的關系,并證明猜想.
(3)當∠A變?yōu)殁g角時,如圖,上述(1)(2)中的結論是否都成立, 若結論成立,直接回答,不需證明;若結論不成立,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若兩條拋物線的頂點相同,則稱它們?yōu)?/span>“友好拋物線”,拋物線C1:y1=﹣2x2+4x+2與C2:u2=﹣x2+mx+n為“友好拋物線”.
(1)求拋物線C2的解析式.
(2)點A是拋物線C2上在第一象限的動點,過A作AQ⊥x軸,Q為垂足,求AQ+OQ的最大值.
(3)設拋物線C2的頂點為C,點B的坐標為(﹣1,4),問在C2的對稱軸上是否存在點M,使線段MB繞點M逆時針旋轉90°得到線段MB′,且點B′恰好落在拋物線C2上?若存在求出點M的坐標,不存在說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一位運動員在距籃下4m處跳起投籃,球運行的路線是拋物線,當球運行的水平距離是2.5m時,達到最大高度3.5m,然后準確落入籃圈.已知籃圈中心到地面的距離為3.05m.
(1)建立如圖所示的平面直角坐標系,求拋物線的解析式.
(2)該運動員身高1.8m,在這次跳投中,球在頭頂上0.25m處出手,
問:球出手時,他距離地面的高度是多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com