分析 (1)由圓內(nèi)接四邊形的性質(zhì)和鄰補角關系證出∠FBC=∠CAD,再由角平分線和對頂角相等得出∠FAB=∠CAD,由圓周角定理得出∠FAB=∠FCB,即可得出結(jié)論;
(2)由(1)得:∠FBC=∠FCB,由圓周角定理得出∠FAB=∠FBC,由公共角∠BFA=∠BFD,證出△AFB∽△BFD,得出對應邊成比例求出BF,得出FD、AD的長,由圓周角定理得出∠BFA=∠BCA=90°,由三角函數(shù)求出∠FBA=30°,再由三角函數(shù)求出CD的長即可.
解答 (1)證明:∵四邊形AFBC內(nèi)接于圓,
∴∠FBC+∠FAC=180°,
∵∠CAD+∠FAC=180°,
∴∠FBC=∠CAD,
∵AD是△ABC的外角∠EAC的平分線,
∴∠EAD=∠CAD,
∵∠EAD=∠FAB,
∴∠FAB=∠CAD,
又∵∠FAB=∠FCB,
∴∠FBC=∠FCB;
(2)解:由(1)得:∠FBC=∠FCB,
又∵∠FCB=∠FAB,
∴∠FAB=∠FBC,
∵∠BFA=∠BFD,
∴△AFB∽△BFD,
∴$\frac{BF}{FD}=\frac{FA}{BF}$,
∴BF2=FA•FD=12,
∴BF=2$\sqrt{3}$,
∵FA=2,
∴FD=6,AD=4,
∵AB為圓的直徑,
∴∠BFA=∠BCA=90°,
∴tan∠FBA=$\frac{AF}{BF}$=$\frac{2}{2\sqrt{3}}$=$\frac{\sqrt{3}}{3}$,
∴∠FBA=30°,
又∵∠FDB=∠FBA=30°,
∴CD=AD•cos30°=4×$\frac{\sqrt{3}}{2}$=2$\sqrt{3}$.
點評 本題考查了相似三角形的判定與性質(zhì)、圓周角定理、圓內(nèi)接四邊形的性質(zhì)、三角函數(shù)等知識;本題綜合性強,有一定難度,證明三角形相似是解決問題的關鍵.
科目:初中數(shù)學 來源: 題型:選擇題
A. | 22.5° | B. | 36° | C. | 45° | D. | 90° |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | x+1=(30-x)-2 | B. | x+1=(15-x)-2 | C. | x-1=(30-x)+2 | D. | x-1=(15-x)+2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com