【題目】如圖,在Rt△ABC中,∠C=90°,BC=8,tanB= ,點(diǎn)D在BC上,且BD=AD,求AC的長和cos∠ADC的值.

【答案】解:

∵在Rt△ABC中,BC=8,tanB= ,tanB=
∴AC=BCtanB=4,
設(shè)AD=x,則BD=x,CD=8﹣x,
由在Rt△ADC中,由勾股定理得,(8﹣x)2+42=x2 , 解得x=5,
AD=5,CD=8﹣5=3,
∴cos∠ADC=
【解析】根據(jù)tanB= = 求出AC,設(shè)AD=x,則BD=x,CD=8﹣x,在Rt△ADC中,由勾股定理得出方程(8﹣x)2+42=x2 , 求出x,求出AD和CD,代入cos∠ADC= 求出即可.
【考點(diǎn)精析】利用勾股定理的概念和解直角三角形對題目進(jìn)行判斷即可得到答案,需要熟知直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,E、F分別是邊AB、CD上的點(diǎn),AE=CF,連接EF、BF,EF與對角線AC交于點(diǎn)O,且BE=BF,BEF=2BAC。

(1)求證;OE=OF;(2)若BC=,求AB的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,大樓AB高16米,遠(yuǎn)處有一塔CD,某人在樓底B處測得塔頂?shù)难鼋菫?8.5°,爬到樓頂A處測得塔頂?shù)难鼋菫?2°,求塔高CD及大樓與塔之間的距離BD的長.(參考數(shù)據(jù):sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80 )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在每個小正方形的邊長均為1的7×7網(wǎng)格圖中,格點(diǎn)上有A,B,C,D,E五個定點(diǎn),如圖所示,一個動點(diǎn)P從點(diǎn)E出發(fā),繞點(diǎn)A逆時針旋轉(zhuǎn)90°,之后該動點(diǎn)繼續(xù)繞點(diǎn)B,C,D逆時針90°后回到初始位置,點(diǎn)P運(yùn)轉(zhuǎn)路線的總長是 . (結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知△ABC,求證:∠A+∠B+∠C=180°.

通過畫平行線,將∠A、∠B、∠C作等角代換,使各角之和恰為一平角,依輔助線不同而得多種證法.

證法1:如圖1,延長BCD,過CCE∥BA.

∵BA∥CE(作圖2所知),

∴∠B=∠1,∠A=∠2(兩直線平行,同位角、內(nèi)錯角相等).

∵∠BCD=∠BCA+∠2+∠1=180°(平角的定義),

∴∠A+∠B+∠ACB=180°(等量代換).

如圖3,過BC上任一點(diǎn)F,畫FH∥AC,F(xiàn)G∥AB,這種添加輔助線的方法能證明∠A+∠B+∠C=180°嗎?請你試一試.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ADBC邊上的中線,EAD的中點(diǎn),過點(diǎn)ABC的平行線交BE的延長線于點(diǎn)F,連接CF.

(1)求證:AF=DC ;

(2)若∠BAC=,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上、三點(diǎn)所代表的數(shù)分別是、、,且.若下列選項(xiàng)中,有一個表示、三點(diǎn)在數(shù)軸上的位置關(guān)系,則此選項(xiàng)為何?(

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在由邊長為1的小正方形組成的網(wǎng)格中,三角形ABC的頂點(diǎn)均落在格點(diǎn)上.

(1)將△ABC繞點(diǎn)O順時針旋轉(zhuǎn)90°后,得到△A1B1C1 . 在網(wǎng)格中畫出△A1B1C1;
(2)求線段OA在旋轉(zhuǎn)過程中掃過的圖形面積;(結(jié)果保留π)
(3)求∠BCC1的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某一工程,在工程招標(biāo)時,接到甲、乙兩個工程隊(duì)的投標(biāo)書.施工一天,需付甲工程隊(duì)工程款1.2萬元,乙工程隊(duì)工程款0.5萬元.工程領(lǐng)導(dǎo)小組根據(jù)甲、乙兩隊(duì)的投標(biāo)書測算,有如下方案:

1)甲隊(duì)單獨(dú)完成這項(xiàng)工程剛好如期完成;

2)乙隊(duì)單獨(dú)完成這項(xiàng)工程要比規(guī)定日期多用6天;

3)若甲、乙兩隊(duì)合作3天,余下的工程由乙隊(duì)單獨(dú)做也正好如期完成.

試問:(1)規(guī)定日期是多少天?

(2)在不耽誤工期的前提下,你覺得哪一種施工方案最節(jié)省工程款?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案