【題目】如圖,將矩形紙片沿折疊,使點(diǎn)與點(diǎn)重合,再將沿折疊,使點(diǎn)恰好落在上的點(diǎn)處.若,則的長為_____.
【答案】
【解析】
根據(jù)折疊的性質(zhì)可以證明△DEM≌△DCN,得DM=DN,再根據(jù)折疊可得∠BNM=∠DNM=∠DNC,可證明△DMN是等邊三角形,再根據(jù)等邊三角形的性質(zhì)即可求出AD的長.
由折疊可知:
點(diǎn)B與點(diǎn)D重合,
∴∠EDN=90°,
∵四邊形ABCD是矩形,
∴∠ADC=90°,
∴∠EDM+∠MDN=∠CDN+∠MDN,
∴∠EDM=∠CDN,
∵∠E=∠C=90°,
DE=DC,
∴△DEM≌△DCN(ASA),
∴DM=DN,
由折疊,
∠BNM=∠DNM,∠DNC=∠DNM,
∴∠BNM=∠DNM=∠DNC=×180°=60°,
∴△DMN是等邊三角形,
∴DM=MN=5,
點(diǎn)C恰好落在MN上的點(diǎn)F處可知:
∠DFN=90°,即DF⊥MN,
∴MF=NF=MN=,
∴CN=ME=AM=,
∴AD=AM+DM=.
故答案為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點(diǎn),經(jīng)過點(diǎn),與軸分別交于,兩點(diǎn).
(1)求該拋物線的解析式;
(2)如圖1,點(diǎn)是拋物線上的一個(gè)動(dòng)點(diǎn),且在直線的下方,過點(diǎn)作軸的平行線與直線交于點(diǎn),當(dāng)取最大值時(shí),求點(diǎn)的坐標(biāo);
(3)如圖2,軸交軸于點(diǎn),點(diǎn)是拋物線上,之間的一個(gè)動(dòng)點(diǎn),直線,與分別交于,,當(dāng)點(diǎn)運(yùn)動(dòng)時(shí).
①直接寫出的值;
②直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形中,,點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn),以點(diǎn)為圓心,為半徑作,連接.
(1)當(dāng)經(jīng)過的中點(diǎn)時(shí),的長為_ ;
(2)當(dāng)平分時(shí),判斷與的位置關(guān)系.說明理由,并求出的長;
(3)如圖2,當(dāng)與交于兩點(diǎn),且時(shí),求點(diǎn)到的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD邊長為4,E、F、G、H分別是AB、BC、CD、DA上的點(diǎn),且AE=BF=CG=DH.設(shè)A、E兩點(diǎn)間的距離為x,四邊形EFGH的面積為y,則y與x的函數(shù)圖象可能是( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C是⊙O的直徑AB延長線上一點(diǎn),過⊙O上一點(diǎn)D作DF⊥AB于F,交⊙O于點(diǎn)E,點(diǎn)M是BE的中點(diǎn),AB=4,∠E=∠C=30°.
(1)求證:CD是⊙O的切線;
(2)求DM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實(shí)踐
問題情境
數(shù)學(xué)活動(dòng)課上,老師讓同學(xué)們以“三角形的旋轉(zhuǎn)”為主題開展數(shù)學(xué)活動(dòng),和是兩個(gè)全等的直角三角形紙片,其中,,.
解決問題
(1)如圖①,智慧小組將繞點(diǎn)順時(shí)針旋轉(zhuǎn),發(fā)現(xiàn)當(dāng)點(diǎn)恰好落在邊上時(shí),,請(qǐng)你幫他們證明這個(gè)結(jié)論;
(2)縝密小組在智慧小組的基礎(chǔ)上繼續(xù)探究,連接,當(dāng)C繞點(diǎn)繼續(xù)旋轉(zhuǎn)到如圖②所示的位置時(shí),他們提出,請(qǐng)你幫他們驗(yàn)證這一結(jié)論是否正確,并說明理由;
探索發(fā)現(xiàn)
(3)如圖③,勤奮小組在前兩個(gè)小組的啟發(fā)下,繼續(xù)旋轉(zhuǎn),當(dāng)三點(diǎn)共線時(shí),求的長;
(4)在圖①的基礎(chǔ)上,寫出一個(gè)邊長比為的三角形(可添加字母).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)設(shè)計(jì)了一款工藝品,每件的成本是50元,為了合理定價(jià),投放市場(chǎng)進(jìn)行試銷.據(jù)市場(chǎng)調(diào)查,銷售單價(jià)是100元時(shí),每天的銷售量是50件,而銷售單價(jià)每降低1元,每天就可多售出5件,但要求銷售單價(jià)不得低于成本.
求出每天的銷售利潤元與銷售單價(jià)元之間的函數(shù)關(guān)系式;
求出銷售單價(jià)為多少元時(shí),每天的銷售利潤最大?最大利潤是多少?
如果該企業(yè)要使每天的銷售利潤不低于4000元,且每天的總成本不超過7000元,那么銷售單價(jià)應(yīng)控制在什么范圍內(nèi)?每天的總成本每件的成本每天的銷售量
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形中,,點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn),以點(diǎn)為圓心,為半徑作,連接.
(1)當(dāng)經(jīng)過的中點(diǎn)時(shí),的長為_ ;
(2)當(dāng)平分時(shí),判斷與的位置關(guān)系.說明理由,并求出的長;
(3)如圖2,當(dāng)與交于兩點(diǎn),且時(shí),求點(diǎn)到的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為弘揚(yáng)泰山文化,某校舉辦了“泰山詩文大賽”活動(dòng),從中隨機(jī)抽取部分學(xué)生的比賽成績(jī),根據(jù)成績(jī)(成績(jī)都高于50分),繪制了如下的統(tǒng)計(jì)圖表(不完整):
組別 | 分?jǐn)?shù) | 人數(shù) |
第1組 | 90<x≤100 | 8 |
第2組 | 80<x≤90 | a |
第3組 | 70<x≤80 | 10 |
第4組 | 60<x≤70 | b |
第5組 | 50<x≤60 | 3 |
請(qǐng)根據(jù)以上信息,解答下列問題:
(1)求出a,b的值;
(2)計(jì)算扇形統(tǒng)計(jì)圖中“第5組”所在扇形圓心角的度數(shù);
(3)若該校共有1800名學(xué)生,那么成績(jī)高于80分的共有多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com