【題目】不等式3x>6的解集是_____.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人以相同路線前往距離單位10km的培訓(xùn)中心參加學(xué)習(xí).圖中l甲、l乙分別表示甲、乙兩人前往目的地所走的路程S(km)隨時間t(分)變化的函數(shù)圖象.以下說法:
①乙比甲提前12分鐘到達(dá);
②甲的平均速度為15千米/小時;
③乙走了8km后遇到甲;
④乙出發(fā)6分鐘后追上甲.
其中正確的有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)將△ABD平移,使D沿BD延長線移至C得到△A′B′D′,A′B′交AC于E,AD平分∠BAC.
(1)猜想∠B′EC與∠A′之間的關(guān)系,并寫出理由.
(2)如圖將△ABD平移至如圖(2)所示,得到△A′B′D′,請問:A′D平分∠B′A′C嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y= +x+m的頂點在直線y=x+3上,過點F(﹣2,2)的直線交該拋物線于點M、N兩點(點M在點N的左邊),MA⊥x軸于點A,NB⊥x軸于點B.
(1)先通過配方求拋物線的頂點坐標(biāo)(坐標(biāo)可用含m的代數(shù)式表示),再求m的值;
(2)設(shè)點N的橫坐標(biāo)為a,試用含a的代數(shù)式表示點N的縱坐標(biāo),并說明NF=NB;
(3)若射線NM交x軸于點P,且PAPB= ,求點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在下面平面直角坐標(biāo)系中,已知A ,B ,C 三點.其中滿足.
(1)求的值;
(2)如果在第二象限內(nèi)有一點 ,請用含的式子表示四邊形的面積;
(3)在(2)的條件下,是否存在點,使四邊形的面積為△的面積的兩倍?若存在,求出點的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】規(guī)定兩數(shù)a,b之間的一種運(yùn)算,記作(a,b):如果,那么(a,b)=c.
例如:因為23=8,所以(2,8)=3.
(1)根據(jù)上述規(guī)定,填空:
(3,27)=_______,(5,1)=_______,(2, )=_______.
(2)小明在研究這種運(yùn)算時發(fā)現(xiàn)一個現(xiàn)象:(3n,4n)=(3,4)小明給出了如下的證明:
設(shè)(3n,4n)=x,則(3n)x=4n,即(3x)n=4n
所以3x=4,即(3,4)=x,
所以(3n,4n)=(3,4).
請你嘗試運(yùn)用上述這種方法說明下面這個等式成立的理由:(4,5)+(4,6)=(4,30)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為積極響應(yīng)政府提出的“綠色發(fā)展·低碳出行”號召,某社區(qū)決定購置一批共享單車,經(jīng)市場調(diào)查得知,購買3量男式單車與4輛女式單車費(fèi)用相同,購買5輛男式單車與4輛女式單車共需16000元.
(1)求男式單車和女式單車的單價;
(2)該社區(qū)要求男式單比女式單車多4輛,兩種單車至少需要22輛,購置兩種單車的費(fèi)用不超過50000元,該社區(qū)有幾種購置方案?怎樣購置才能使所需總費(fèi)用最低,最低費(fèi)用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,E是AB的中點,以點E為圓心,EB為半徑畫弧,交BC于點D,連接ED并延長到點F,使DF=DE,連接FC,若∠B=70°,則∠F的度數(shù)是( 。
A. 40 B. 70 C. 50 D. 45
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com