【題目】在甲村至乙村的公路旁有一塊山地正在開(kāi)發(fā),現(xiàn)有一處需要爆破.已知點(diǎn)與公路上的?空的距離為米,與公路上另一停靠站的距離為米,且,如圖,為了安全起見(jiàn),爆破點(diǎn)周?chē)霃?/span>米范圍內(nèi)不得進(jìn)入,問(wèn)在進(jìn)行爆破時(shí),公路段是否有危險(xiǎn),是否需要暫時(shí)封鎖?請(qǐng)通過(guò)計(jì)算進(jìn)行說(shuō)明.
【答案】沒(méi)有危險(xiǎn),因此AB段公路不需要暫時(shí)封鎖.
【解析】
本題需要判斷點(diǎn)C到AB的距離是否小于250米,如果小于則有危險(xiǎn),大于則沒(méi)有危險(xiǎn).因此過(guò)C作CD⊥AB于D,然后根據(jù)勾股定理在直角三角形ABC中即可求出AB的長(zhǎng)度,然后利用三角形的公式即可求出CD,然后和250米比較大小即可判斷需要暫時(shí)封鎖.
解:如圖,過(guò)C作CD⊥AB于D,
∵BC=800米,AC=600米,∠ACB=90°,
∴米,
∵ABCD=BCAC,
∴CD=480米.
∵400米<480米,
∴沒(méi)有危險(xiǎn),因此AB段公路不需要暫時(shí)封鎖.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將兩塊三角尺AOB與COD的直角頂點(diǎn)O重合在一起,若∠AOD=4∠BOC,OE為∠BOC的平分線,則∠DOE的度數(shù)為( )
A. 36° B. 45° C. 60° D. 72°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E,F分別是正方形ABCD的邊CD,AD上的點(diǎn),且CE=DF,AE、BF相交于點(diǎn)O,下列結(jié)論:①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四邊形DEOF其中正確的結(jié)論是( )
A.①②④B.②③④C.①②③D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一個(gè)幾何體的三視圖.
(1)寫(xiě)出該幾何體的名稱,并根據(jù)所示數(shù)據(jù)計(jì)算這個(gè)幾何體的表面積;
(2)如果一只螞蟻要從這個(gè)幾何體中的點(diǎn)B出發(fā),沿表面爬到AC的中點(diǎn)D,請(qǐng)你求出這個(gè)線路的最短路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(分)周末,小英與她的父親、母親計(jì)劃從西安外出旅游,初步選擇了位于西安東線的景點(diǎn):兵馬俑, :華山,以及位于西線的景點(diǎn):太白山, :法門(mén)寺, :楊凌現(xiàn)代農(nóng)業(yè)示范園.由于時(shí)間倉(cāng)促,他們只能去其中的兩個(gè)景點(diǎn),并且希望兩個(gè)景點(diǎn)能位于一條線路上.到底去哪兩個(gè)景點(diǎn),三人意見(jiàn)不統(tǒng)一.在這種情況下,小英父親建議,用小英學(xué)過(guò)的摸卡片游戲來(lái)決定.規(guī)則如下:在五個(gè)背面完全相同的卡片上寫(xiě)上五個(gè)景點(diǎn)的代號(hào),然后洗勻,背面朝上放在桌面上,讓小英隨機(jī)摸出一張,不放回,然后讓小英母親再隨機(jī)摸出一張.照上面的規(guī)則,請(qǐng)你解答下列問(wèn)題:
()己知小英的理想旅游景點(diǎn)是兵馬俑,求小英摸出寫(xiě)有的卡片的概率.
()求小英和母親摸出的景點(diǎn)位于一條線上(東線或西線)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為的高,為的角平分線,若,.
(1) ;
(2)求的度數(shù);
(3)若點(diǎn)為線段上任意一點(diǎn),當(dāng)為直角三角形時(shí),則求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,AE⊥BC于E,AF⊥CD于F,BD與AE、AF交于G、H.
(1)求證:△ABE∽△ADF;
(2)若AG=AH,求證:四邊形ABCD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)至,點(diǎn)的對(duì)應(yīng)點(diǎn)分別是,連接線段與線段交于點(diǎn)M,連接.
(1)如圖1,求證:;
(2)如圖1,求證:OM平分;
(3)如圖2,若,求的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com