如圖,四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點(diǎn).

(1)請判斷四邊形EFGH的形狀?并說明為什么.
(2)若使四邊形EFGH為正方形,那么四邊形ABCD的對角線應(yīng)具有怎樣的性質(zhì)?
見解析

解:(1)四邊形EFGH是平行四邊形,
連接BD,∵E、H分別為AB、AD的中點(diǎn),
∴EH∥BD,EH=BD.
同理GF∥BD,GF=BD.
∴四邊形EFGH是平行四邊形.
(2)四邊形ABCD的對角線垂直且相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1)如圖,已知△ABC,試畫出AB邊上的中線和AC邊上的高;

(2)有沒有這樣的多邊形,它的內(nèi)角和是它的外角和的3倍?如果有,請求出它的邊數(shù),并寫出過這個(gè)多邊形的一個(gè)頂點(diǎn)的對角線的條數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1)如圖1,在正方形ABCD中,E是AB上一點(diǎn),F(xiàn)是AD延長線上一點(diǎn),且DF=BE.求證:CE=CF;

(2)如圖2,在正方形ABCD中,E是AB上一點(diǎn),G是AD上一點(diǎn),如果∠GCE=45°,請你利用(1)的結(jié)論證明:GE=BE+GD;
(3)運(yùn)用(1)(2)解答中所積累的經(jīng)驗(yàn)和知識(shí),完成下題:
如圖3,在直角梯形ABCD中,AD∥BC,(BC>AD),∠B=90°,AB=BC,E是AB上一點(diǎn),且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AE是正方形ABCD中∠BAC的角平分線,AE分別交BD、BC于點(diǎn)F、E,AC與BD交于點(diǎn)O,求證:OF=CE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖, △ABC中,AB=AC,AD是△ABC的角平分線,點(diǎn)O為AB的中點(diǎn),連接DO并延長到點(diǎn)E,使OE=OD,連接AE,BE.

(1)求證:四邊形AEBD是矩形;
(2)當(dāng)△ABC滿足什么條件時(shí),矩形AEBD是正方形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知菱形的面積為24 cm2,一條對角線長為6 cm,則這個(gè)菱形的周長是              cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在一個(gè)平行四邊形中,兩對平行于邊的直線將這個(gè)平行四邊形分為九個(gè)小平行四邊形,如果原來這個(gè)平行四邊形的面積為100cm2,而中間那個(gè)小平行四邊形(陰影部分)的面積為20平方厘米,則四邊形ABDC的面積是(    )
A.40 cm2B.60 cm2C.70 cm2D.80 cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

菱形的周長為8 cm,高為1 cm,則該菱形兩鄰角度數(shù)比為(  )
A.3∶1B.4∶1 C.5∶1D.6∶1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

正八邊形的每個(gè)內(nèi)角為 (  )
A.120°B.135°C.140°D.144°

查看答案和解析>>

同步練習(xí)冊答案