如圖,已知拋物線C1的頂點(diǎn)為P,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),點(diǎn)A的橫坐標(biāo)是
【小題1】求點(diǎn)坐標(biāo)及的值;
【小題2】如圖(1),拋物線C2與拋物線C1關(guān)于x軸對稱,將拋物線C2向左平移,平移后的拋物線記為C3,C3的頂點(diǎn)為M,當(dāng)點(diǎn)P、M關(guān)于點(diǎn)A成中心對稱時,求C3的解析式;
【小題3】如圖(2),點(diǎn)Q是x軸負(fù)半軸上一動點(diǎn),將拋物線C1繞點(diǎn)Q旋轉(zhuǎn)180°后得到拋物線C4.拋物線C4的頂點(diǎn)為N,與x軸相交于E、F兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),當(dāng)以點(diǎn)P、N、E為頂點(diǎn)的三角形是直角三角形時,求頂點(diǎn)N的坐標(biāo).


【小題1】由拋物線C1得頂點(diǎn)P的坐標(biāo)為(2,5)
∵點(diǎn)A(-1,0)在拋物線C1上∴
【小題2】連接PM,作PH⊥x軸于H,作MG⊥x軸于G..
∵點(diǎn)P、M關(guān)于點(diǎn)A成中心對稱,∴PM過點(diǎn)A,且PA=MA..∴△PAH≌△MAG..∴MG=PH=5,AG=AH=3.∴頂點(diǎn)M的坐標(biāo)為(,5)
∵拋物線C2與C1關(guān)于x軸對稱,拋物線C3由C2平移得到
∴拋物線C3的表達(dá)式

【小題3】∵拋物線C4由C1繞x軸上的點(diǎn)Q旋轉(zhuǎn)180°得到
∴頂點(diǎn)N、P關(guān)于點(diǎn)Q成中心對稱. 由(2)得點(diǎn)N的縱坐標(biāo)為5.設(shè)點(diǎn)N坐標(biāo)為(m,5),作PH⊥x軸于H,作NG⊥x軸于G,作PR⊥NG于R.∵旋轉(zhuǎn)中心Q在x軸上,
∴EF=AB=2AH=6.
∴EG=3,點(diǎn)E坐標(biāo)為(,0),H坐標(biāo)為(2,0),R坐標(biāo)為(m,-5).
根據(jù)勾股定理,得
  
 
   
①當(dāng)∠PNE=90º時,PN2+ NE2=PE2
解得m=,∴N點(diǎn)坐標(biāo)為(,5)
②當(dāng)∠PEN=90º時,PE2+ NE2=PN2,
解得m=,∴N點(diǎn)坐標(biāo)為(,5).
③∵PN>NR=10>NE,∴∠NPE≠90º ………7分
綜上所得,當(dāng)N點(diǎn)坐標(biāo)為(,5)或(,5)時,以點(diǎn)P、N、E為頂點(diǎn)的三角形是直角三角形.

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線C1:y=a(x+2)2-5的頂點(diǎn)為P,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),點(diǎn)B的橫坐標(biāo)是1.
(1)求P點(diǎn)坐標(biāo)及a的值;
(2)如圖(1),拋物線C2與拋物線C1關(guān)于x軸對稱,將拋物線C2向右平移,平移后的拋物線記為C3,C3的頂點(diǎn)為M,當(dāng)點(diǎn)P、M關(guān)于點(diǎn)B成中心對稱時,求C3的解析式;
(3)如圖(2),點(diǎn)Q是x軸正半軸上一點(diǎn),將拋物線C1繞點(diǎn)Q旋轉(zhuǎn)180°后得到拋物線C4.拋物線C4的頂點(diǎn)為N,與x軸相交于E、F兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),當(dāng)以點(diǎn)P、N、F為頂點(diǎn)的三角形是直角三角形時,求點(diǎn)Q的坐標(biāo).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線C1:y=a(x-2)2-5的頂點(diǎn)為P,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),點(diǎn)A的橫坐標(biāo)是-1.
(1)求P點(diǎn)坐標(biāo)及a的值;
(2)如圖(1),拋物線C2與拋物線C1關(guān)于x軸對稱,將拋物線C2向左平移,平移后的拋物線記為C3,C3的頂點(diǎn)為M,當(dāng)點(diǎn)P、M關(guān)于點(diǎn)A成中心對稱時,求C3的解析式y(tǒng)=a(x-h)2+k;
(3)如圖(2),點(diǎn)Q是x軸負(fù)半軸上一動點(diǎn),將拋物線C1繞點(diǎn)Q旋轉(zhuǎn)180°后得到拋物線C4.拋物線C4的頂點(diǎn)為N,與x軸相交于E、F兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),當(dāng)以點(diǎn)P、N、E為頂點(diǎn)的三角形是直角三角形時,求頂點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線c1:y=-
14
x2+bx+c
與x軸交于點(diǎn)A、B(點(diǎn)A在B的左側(cè)),與y軸交于點(diǎn)C,拋物線c2與拋物線c1關(guān)于y軸對稱,點(diǎn)A、B的對稱點(diǎn)分別是E、D,連接CD、CB,設(shè)AD=m.
(1)拋物線c2可以看成拋物線c1向右平移
m
m
個單位得到.
(2)若m=2,求b的值.
(3)將△CDB沿直線BC折疊,點(diǎn)D的對應(yīng)點(diǎn)為G,且四邊形CDBG是平行四邊形,
①△CDB為
等邊
等邊
三角形(按邊分);
②若點(diǎn)G恰好落在拋物線c2上,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線C1:y=a(x+2)2-5的頂點(diǎn)為P,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B精英家教網(wǎng)的左側(cè)),點(diǎn)B的橫坐標(biāo)是1;
(1)求a的值;
(2)如圖,拋物線C2與拋物線C1關(guān)于x軸對稱,將拋物線C2向右平移,平移后的拋物線記為C3,拋物線C3的頂點(diǎn)為M,當(dāng)點(diǎn)P、M關(guān)于點(diǎn)O成中心對稱時,求拋物線C3的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線C1y=
12
x2
,把它平移后得拋物線C2,使C2經(jīng)過點(diǎn)A(0,8),且與拋物線C1交于點(diǎn)B(2,n).在x軸上有一點(diǎn)P,從原點(diǎn)O出發(fā)以每秒1個單位的速度沿x軸正半軸的方向移動,設(shè)點(diǎn)P移動的時間為t秒,過點(diǎn)P作x軸的垂線l,分別交拋物線C1、C2于E、D,當(dāng)直線l經(jīng)過點(diǎn)B前停止運(yùn)動,以DE為邊在直線l左側(cè)畫正方形DEFG.
(1)判斷拋物線C2的頂點(diǎn)是否在x軸上,并說明理由;
(2)當(dāng)t為何值時,正方形DEFG在y軸右側(cè)的部分的面積S有最大值?最大值為多少?
(3)設(shè)M為正方形DEFG的對稱中心.當(dāng)t為何值時,△MOP為等腰三角形?

查看答案和解析>>

同步練習(xí)冊答案