D.3">
【題目】二次函數(shù)(,,是常數(shù),)的自變量x與函數(shù)值y的部分對應值如下表:
… | -1 | 0 | 1 | 3 | … | |
… | 3 | 3 | … |
且當時,與其對應的函數(shù)值.有下列結論:①;②3是關于的方程的一個根;③.其中,正確結論的個數(shù)是( )
A.0B.1C.2/span>D.3
【答案】C
【解析】
通過表格確定函數(shù)的對稱性、函數(shù)和坐標軸的交點等基本特征,進而求解.
解:當時,與其對應的函數(shù)值,結合題意可知a>0
當x=0時,c=3,
當x=3時,9a+3b+c=3,
∴3a+b=0,∴b=-3a
∴b<0
∴abc<0,
①正確;
可以化為ax2+(-3a-1)x+3=0
將x=3代入方程可得9a+3(-3a-1)+3=0
∴3是關于的方程的一個根
②正確;
拋物線的解析式為y=ax2-3ax+3
n=a+3a+3=4a+3,m=a-3a+3=-2a+3
m+n=2a+6
∵a>0,∴m+n>6
當x=式,y=a-a+3=-a+3
∵當時,與其對應的函數(shù)值
∴-a+3<0
∴a>
∴m+n>
③錯誤;
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某飛機于空中探測某座山的高度,在點A處飛機的飛行高度是AF=3700米,從飛機上觀測山頂目標C的俯角是45°,飛機繼續(xù)以相同的高度飛行300米到B處,此時觀測目標C的俯角是50°.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.20)
(1)直接寫出∠ACB的大。
(2)求這座山的高度CD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等邊△OA1B1,頂點A1在雙曲線y=(x>0)上,點B1的坐標為(2,0).過B1作B1A2∥OA1交雙曲線于點A2,過A2作A2B2∥A1B1交x軸于點B2,得到第二個等邊△B1A2B2;過B2作B2A3∥B1A2交雙曲線于點A3,過A3作A3B3∥A2B2交x軸于點B3,得到第三個等邊△B2A3B3;以此類推,…,則點B6的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB=BC,延長AC到點D,使得CD=CB,連接BD交⊙O于點E,過點E做BC的平行線交CD于點F.
(1)求證:AE=DE.
(2)求證:EF為⊙O的切線;
(3)若AB=5,BE=3,求弦AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了優(yōu)化環(huán)境,將對某一小區(qū)環(huán)境進行綠化,現(xiàn)有甲、乙兩家綠化公司進行了投標,各自推出了綠化收費方案如下:甲公司綠化費用(元) 與綠化面積(平方米)是一次函數(shù)關系,如圖所示。
乙公司:綠化面積不超過1000平方米時,統(tǒng)一收取費用5000元;綠化面積超過1000平方米時,超過部分每平方米收取3元.
(1)求甲、乙公司綠化費用(元)與綠化面積(平方米)的函數(shù)表達式;
(2)如果該小區(qū)目前的綠化面積是1500平方米,試通過計算說明:選擇哪家公司的綠化費用較少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一個矩形紙片放置在平面直角坐標系中,點,點,點E,F分別在邊,上.沿著折疊該紙片,使得點A落在邊上,對應點為,如圖①.再沿折疊,這時點E恰好與點C重合,如圖②.
(Ⅰ)求點C的坐標;
(Ⅱ)將該矩形紙片展開,再折疊該矩形紙片,使點O與點F重合,折痕與相交于點P,展開矩形紙片,如圖③.
①求的大。
②點M,N分別為,上的動點,當取得最小值時,求點N的坐標(直接寫出結果即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與實踐:再探平行四邊形的性質
問題情境:
學完平行四邊形的有關知識后,同學們開展了再探平行四邊形性質的數(shù)學活動,以下是“希望小組”得到的一個性質:
如圖1,已知平行四邊形中,,于點,垂直于點,則.
問題解決:
(1)如圖2,當時,還成立嗎?證明你發(fā)現(xiàn)的結論;
(2)如圖2,連接和,若.求的度數(shù);
(3)如圖3,若,,點是射線上一點,且.則_________.(用含的三角函數(shù)表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,中,,.動點在的邊上按的路線勻速移動,當點到達點時停止移動;動點以的速度在的邊上按的路線勻速移動,當點到達點時停止移動.已知點、點同時開始移動,同時停止移動(即同時到達各自的終止位置).設動點移動的時間為,的面積為,與的函數(shù)關系如圖②所示.
(1)圖①中 ,圖②中 ;
(2)求與的函數(shù)表達式;
(3)當為何值時,為等腰三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com