【題目】如圖,已知正方形ABCD的邊長為,連接AC、BD交于點O,CE平分∠ACD交BD于點E,
(1)求DE的長;
(2)過點EF作EF⊥CE,交AB于點F,求BF的長;
(3)過點E作EG⊥CE,交CD于點G,求DG的長.
【答案】(1)2-;(2)2-;(3)3-4.
【解析】
(1)求出,根據(jù)勾股定理求出,即可求出;
(2)求出,根據(jù)全等三角形的性質(zhì)得出即可;
(3)延長交于,證,得出比例式,代入即可求出答案.
解:(1)∵四邊形ABCD是正方形,
∴∠ABC=∠ADC=90°,
∠DBC=∠BCA=∠ACD=45°,
∵CE平分∠DCA,
∴∠ACE=∠DCE=∠ACD=22.5°,
∴∠BCE=∠BCA+∠ACE=45°+22.5°=67.5°,
∵∠DBC=45°,
∴∠BEC=180°﹣67.5°﹣45°=67.5°=∠BCE,
∴BE=BC=,
在Rt△ACD中,由勾股定理得:BD==2,
∴DE=BD﹣BE=2﹣;
(2)∵FE⊥CE,
∴∠CEF=90°,
∴∠FEB=∠CEF﹣∠CEB=90°﹣67.5°=22.5°=∠DCE,
∵∠FBE=∠CDE=45°,BE=BC=CD,
∴△FEB≌△ECD,
∴BF=DE=2﹣;
(3)延長GE交AB于F,
由(2)知:DE=BF=2﹣,
由(1)知:BE=BC=,
∵四邊形ABCD是正方形,
∴AB∥DC,
∴△DGE∽△BFE,
∴=,
∴=,
解得:DG=3﹣4.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C是AB的中點,點D是BC的中點,現(xiàn)給出下列等式:①CD=AC-DB,②CD=AB,③CD=AD-BC,④BD=2AD-AB.其中正確的等式編號是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線c1:y=ax2﹣4a+4(a<0)經(jīng)過第一象限內(nèi)的定點P
(1)直接寫出點P的坐標;
(2)若a=﹣1,如圖1,點M的坐標為(2,0)是x軸上的點,N為拋物線c1上的點,Q為線段MN的中點,設點N在拋物線c1上運動時,Q的運動軌跡為拋物線c2 , 求拋物線c2的解析式;
(3)直線y=2x+b與拋物線c1相交于A、B兩點,如圖2,直線PA、PB與x軸分別交于D、C兩代女.當PD=PC時,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=9,點E在CD邊上,且DE=2CE,點P是對角線AC上的一個動點,則PE+PD的最小值是( )
A.3
B.10
C.9
D.9
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點E、F在直線AB上,點G在線段CD上,ED與FG交于點H,∠C=∠EFG,∠CED=∠GHD.
(1)求證:CE∥GF;
(2)試判斷∠AED與∠D之間的數(shù)量關(guān)系,并說明理由;
(3)若∠EHF=100°,∠D=30°,求∠AEM的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,AB=BC,D為AC中點,過點D作DE∥BC,交AB于點E.
(1)求證:AE=DE;
(2)若∠C=65°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一水果經(jīng)銷商購進了A,B兩種水果各10箱,分配給他的甲、乙兩個零售店(分別簡稱甲店、乙店)銷售,預計每箱水果的盈利情況如下表:
A種水果/箱 | B種水果/箱 | |
甲店 | 11元 | 17元 |
乙店 | 9元 | 13元 |
(1)如果甲、乙兩店各配貨10箱,其中A種水果兩店各5箱,B種水果兩店各5箱,請你計算出經(jīng)銷商能盈利多少元?
(2)在甲、乙兩店各配貨10箱(按整箱配送),且保證乙店盈利不小于100元的條件下,請你設計出使水果經(jīng)銷商盈利最大的配貨方案,并求出最大盈利為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為改善生態(tài)環(huán)境,防止水土流失,某村計劃在江漢堤坡種植白楊樹,現(xiàn)甲、乙兩家林場有相同的白楊樹苗可供選擇,其具體銷售方案如下:
甲林場 | 乙林場 | ||
購樹苗數(shù)量 | 銷售單價 | 購樹苗數(shù)量 | 銷售單價 |
不超過1000棵時 | 4元/棵 | 不超過2000棵時 | 4元/棵 |
超過1000棵的部分 | 3.8元/棵 | 超過2000棵的部分 | 3.6元/棵 |
設購買白楊樹苗x棵,到兩家林場購買所需費用分別為y甲(元)、y乙(元).
(1)該村需要購買1500棵白楊樹苗,若都在甲林場購買所需費用為 元,若都在乙林場購買所需費用為 元;
(2)分別求出y甲、y乙與x之間的函數(shù)關(guān)系式;
(3)如果你是該村的負責人,應該選擇到哪家林場購買樹苗合算,為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圓柱形玻璃杯高為12cm、底面周長為18cm,在杯內(nèi)離杯底4cm的點C
處有一滴蜂蜜,此時一只螞蟻正好在杯外壁,離杯上沿4cm與蜂蜜相對的點A處,則螞蟻到達蜂蜜的最
短距離為 ▲ cm.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com