【題目】若二次函數(shù)的圖象與軸交于A、B兩點(A點在B點左側(cè)),頂點為,

(1)求A、B、三點坐標。

(2)在平面直角坐標系中,用列表描點法,作出拋物線圖象(如圖),并根據(jù)圖象回答,為何值時,函數(shù)值大于0?

(3)將此拋物線向下平移2個單位,請寫出平移后的解析式。

【答案】①A(3,0) B(1,0) P(2,1);②由圖象可知,1<<3時,函數(shù)值大于0;③

【解析】

(1)直接求出y=0時,x的值即可得出圖象與x軸交點坐標,再利用配方法求出圖象的頂點坐標即可;
(2)利用圖象直接得出y<0時,即對應(yīng)圖象在x軸下方時,x的取值范圍;
(3)利用二次函數(shù)平移的性質(zhì)得出即可.

(1)y=x2+4x3x軸交于A. B兩點(A點在B點左側(cè)),頂點為P

0=x2+4x3,

解得:x1=1,x2=3,

A(1,0)、B(3,0),

P(2,1);

(2)

-1

0

1

2

3

4

5

-8

-3

0

1

0

-3

-8

如圖所示:

由圖象可知,1<<3時,函數(shù)值大于0;

(3)將此圖象向下平移2個單位

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC 在平面直角坐標系中,點 A,B,C 的坐標分別為 A-2,4),B4,2),C2,-1.

)請在平面直角坐標系內(nèi),畫出ABC 關(guān)于 x 軸的對稱圖形A1B1C1,其中,點 AB,C 的對應(yīng)點分別為A1B1,C1

)請寫出點C2,-1)關(guān)于直線m(直線m上格點的橫坐標都為-1)對稱的點C2的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,經(jīng)過點C⊙O與斜邊AB相切于點P,AC=8,BC=6.

(1)當點OAC上時,求證:2∠ACP=∠B;

(2)在(1)的條件下,求⊙O的半徑.

(3)若圓心O△ABC之外,則CP的變化范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)的圖像與正比例函數(shù)的圖像都經(jīng)過點,點在反比例函數(shù)的圖像上,點在正比例函數(shù)的圖像上.

1)求此正比例函數(shù)的解析式;

2)求線段AB的長;

3)求PAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列等式從左到右的變形中,屬于因式分解的是(  )

A.2x+1x2+

B.ax2aax21

C.x+2)(x1)=x2+x2

D.4a2+9b2=(3b2a)(3b+2a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】"引葭赴岸是《九章算木》中的- -道題:”今有池一丈 ,葭生其中央,出水一尺,引葭赴岸,迺與岸芥.伺水深,葭氏各幾何?"題意是:有一個邊長為10尺的正方形池塘,一棵蘆葦AB生長在它的中央,高出水面BC1.如果把該蘆苓沿與水池邊垂直的方向拉向岸辺,那么蘆革的頂部B恰好碰到岸邊的B'. 向蘆葦長多少? (畫出幾何圖形并解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,中,.

1)按要求作出圖形:

①延長到點,使;②延長到點,使;③連接.

2)猜想(1)中線段的大小關(guān)系,并證明你的結(jié)論.

解:(1)完成作圖

2的大小關(guān)系是______

證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)、都是常數(shù),且叫做奇特函數(shù),當時,奇特函數(shù)就成為反比例函數(shù)是常數(shù),且

若矩形的兩邊長分別是,當兩邊長分別增加后得到的新矩形的面積是,求的函數(shù)關(guān)系式,并判斷這個函數(shù)是否奇特函數(shù)”;

如圖在直角坐標系中,點為原點矩形的頂點,、坐標分別為,點中點,連接、交于,“奇特函數(shù)的圖象經(jīng)過點,求這個函數(shù)的解析式,并判斷、、三點是否在這個函數(shù)圖象上;

對于中的奇特函數(shù)的圖象,能否經(jīng)過適當?shù)淖儞Q后與一個反比例函數(shù)圖象重合,若能,請直接寫出具體的變換過程和這個反比例函數(shù)解析式;若不能,請簡述理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2axa-2=0.

(1)求證:不論a取何實數(shù),該方程都有兩個不相等的實數(shù)根;

(2)若該方程的一個根為1,求a的值及該方程的另一根.

查看答案和解析>>

同步練習(xí)冊答案