【題目】已知一次函數(shù)的圖象與反比例函數(shù)的圖象交于兩點(diǎn),點(diǎn)的坐標(biāo)為
(1)求一次函數(shù)的解析式
(2)已知雙曲線在第一象限上有一點(diǎn)到到軸的距離為3,求的面積
【答案】(1)(2)21
【解析】
(1)先根據(jù)反比例函數(shù)求出點(diǎn)A的坐標(biāo),再由點(diǎn)A的坐標(biāo)根據(jù)待定系數(shù)法即可求得一次函數(shù)解析式;(2)先根據(jù)點(diǎn)到軸的距離為3,確定點(diǎn)C的坐標(biāo),再過點(diǎn)作軸交直線于,則點(diǎn)的縱坐標(biāo)為2,得出點(diǎn)的坐標(biāo)為.然后聯(lián)立,求出點(diǎn)的坐標(biāo).最后根據(jù) 即可求解.
(1)∵當(dāng)時(shí),當(dāng)時(shí),,
∴點(diǎn)的橫坐標(biāo)為1,
代入反比例函數(shù)解析式,,解得,
∴點(diǎn)的坐標(biāo)為,
又∵點(diǎn)在一次函數(shù)圖象上,∴,解得,
∴一次函數(shù)的解析式為;
(2)∵第一象限內(nèi)點(diǎn)到軸的距離為3,
∴點(diǎn)的橫坐標(biāo)為3,∴,
∴點(diǎn)的坐標(biāo)為,
如圖,過點(diǎn)作軸交直線于,則點(diǎn)的縱坐標(biāo)為2,
∴,解得,
∴點(diǎn)的坐標(biāo)為,
∴,
點(diǎn)到的距離為,
聯(lián)立,解得(舍去),,
∴點(diǎn)的坐標(biāo)為,
∴點(diǎn)到的距離為,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線(a≠0)經(jīng)過A(-1,0),B(2,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)點(diǎn)P在拋物線的對(duì)稱軸上,當(dāng)△ACP的周長最小時(shí),求出點(diǎn)P的坐標(biāo);
(3) 點(diǎn)N在拋物線上,點(diǎn)M在拋物線的對(duì)稱軸上,是否存在以點(diǎn)N為直角頂點(diǎn)的Rt△DNM與Rt△BOC相似,若存在,請(qǐng)求出所有符合條件的點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠家一種摩托車如圖所示,它的大燈A射出的光線AB、AC與地面MN的夾角分別為8°和10°.
(1)該車大燈照亮地面的寬度BC是1.4m,求大燈A與地面距離約是多少?
(2)一般正常人從發(fā)現(xiàn)危險(xiǎn)到做出剎車動(dòng)作的反應(yīng)時(shí)間是0.2s,從發(fā)現(xiàn)危險(xiǎn)到摩托車完全停下所行駛的距離叫做最小安全距離,某人以60km/h的速度駕駛該車,突然遇到危險(xiǎn)情況,立即剎車直到摩托車停止,在這個(gè)過程剎車距離是m,請(qǐng)判斷(1)中的該車大燈A的地面高度是否能滿足最小安全距離的要去,若不能該如何調(diào)整A的高度?(參考數(shù)據(jù):sin8°≈,tan8°≈,sin10°≈,tan10°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖拋物線(),下列結(jié)論錯(cuò)誤的是( )
A.a、b同號(hào)B.
C.和時(shí),y值相同D.當(dāng)時(shí),
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的方程,有兩個(gè)不相等實(shí)數(shù)根.
(1)求k的范圍.
(2)是否存在實(shí)數(shù)k,使兩根倒數(shù)和為0,若存在求出k值;若不存在說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖,下列結(jié)論:①abc>0;②2a+b=0;③a-b+c>0;④當(dāng)x≠1時(shí),a+b>ax2+bx:⑤4ac<b2.其中正確的有____________(只填序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象與軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),且,頂點(diǎn)為.
(1)求二次函數(shù)的解析式;
(2)點(diǎn)為線段上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作軸的垂線,垂足為,若,四邊形的面積為,求關(guān)于的函數(shù)解析式,并寫出的取值范圍;
(3)探索:線段上是否存在點(diǎn),使為等腰三角形?如果存在,求出點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說呀理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)x≤3時(shí),函數(shù)y=x2﹣2x﹣3的圖象記為G,將圖象G在x軸上方的部分沿x軸翻折,圖象G的其余部分保持不變,得到一個(gè)新圖象M,若直線y=x+b與圖象M有且只有兩個(gè)公共點(diǎn),則b的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知銳角△ABC內(nèi)接于圓O,D為弧AC上一點(diǎn),分別連接AD、BD、CD,且∠ACB=90°﹣∠BAD.
(1)如圖1,求證:AB=AD;
(2)如圖2,在CD延長線上取點(diǎn)E,連接AE,使AE=AD,過E作EF垂直BD的延長線于點(diǎn)F,過C作CG⊥EC交EF延長線于點(diǎn)G,設(shè)圓O半徑為r,求證:EG=2r;
(3)如圖3,在(2)的條件下,連接DG,若AC=BC,DE=4CD,當(dāng)△ACD的面積為10時(shí),求DG的長度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com