【題目】如圖,在平面直角坐標(biāo)系中,直線交軸于點(diǎn),現(xiàn)將直線繞點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)45°交軸于點(diǎn),則直線的函數(shù)表達(dá)式是_________.
【答案】
【解析】
過(guò)點(diǎn)C作交AB于點(diǎn)F,根據(jù)旋轉(zhuǎn)可得△FCA是等腰直角三角形,得到FC=AF,設(shè)C點(diǎn)的坐標(biāo)為,根據(jù)A,B的坐標(biāo)可求出AB所在直線的解析式為,根據(jù)直線垂直的特點(diǎn)可以求出FC所在的直線解析式為,聯(lián)立可得F的坐標(biāo)為,根據(jù)勾股定理可得出FC和AF的值,然后聯(lián)立式子可求出C點(diǎn)的坐標(biāo),進(jìn)而求的解析式.
過(guò)點(diǎn)C作交AB于點(diǎn)F.
設(shè)直線AB所在的直線解析式為,由題可知,,得
設(shè)直線CF所在直線的解析式為,
∵直線AB與直線CF垂直
∴
∴
∴
聯(lián)立方程組得
解得
∴F ,根據(jù)題意可得
又∵
∴△FCA是等腰直角三角形
∴FC=FA
得到
整理可得
得到
解方程可得:(舍去)
所以得到C點(diǎn)的坐標(biāo)為
設(shè)AC所在直線的解析式為
把A,C代入可得
∴直線AC的函數(shù)表達(dá)式為
故答案為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A.“購(gòu)買張彩票就中獎(jiǎng)”是不可能事件
B.“概率為的事件”是不可能事件
C.“任意畫一個(gè)六邊形,它的內(nèi)角和等于”是必然事件
D.從中任取個(gè)不同的數(shù),分別記為和,那么的概率是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形 ABCD 的對(duì)角線 AC 與 BD 相交于點(diǎn) O,CE∥BD, DE∥AC , AD=2, DE=2,則四邊形 OCED 的面積為( 。
A. 2 B. 4 C. 4 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線()與軸交于A、B兩點(diǎn)(點(diǎn)B在A的右側(cè)),與軸交于點(diǎn)C,D是拋物線的頂點(diǎn).
(1)當(dāng)時(shí),求頂點(diǎn)D 的坐標(biāo)
(2)若OD = OB,求的值;
(3)設(shè)E為A,B兩點(diǎn)間拋物線上的一個(gè)動(dòng)點(diǎn)(含端點(diǎn)A,B),過(guò)點(diǎn)E作EH⊥軸,垂足為H,交直線BC于點(diǎn)F. 記線段EF的長(zhǎng)為t,若t的最大值為,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩個(gè)種子店都銷售“黃金1號(hào)”玉米種子.在甲店,該種子的價(jià)格為 5元 / kg,如果一次購(gòu)買2 kg 以上的種子,超過(guò) 2 kg 部分的種子的價(jià)格打8折.在乙店,不論一次購(gòu)買該種子的數(shù)量是多少,價(jià)格均為4.5 元 / kg.
(1)根據(jù)題意,填寫下表:
(2)設(shè)一次購(gòu)買種子的數(shù)量為 kg(). 在甲店購(gòu)買的付款金額記為元,在乙店購(gòu)買的付款金額為元,分別求,關(guān)于的函數(shù)解析式;
(3) 若在同一店中一次購(gòu)買種子的付款金額是36元,則最多可購(gòu)買種子______ kg.若在同一店中一次購(gòu)買種子10 kg,則最少付款金額是________元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),拋物線分別交軸于、兩點(diǎn)(點(diǎn)在點(diǎn)的側(cè)),與軸交于點(diǎn),連接,.
(1)如圖1,求的值;
(2)如圖2,是軸上一點(diǎn)(不與點(diǎn)、重合),過(guò)點(diǎn)作軸的平行線,交拋物線于點(diǎn),交直線于點(diǎn).
①當(dāng)點(diǎn)在點(diǎn)右側(cè)時(shí),連接AF,當(dāng)時(shí),求的長(zhǎng).
②當(dāng)點(diǎn)在運(yùn)動(dòng)時(shí),若、、中有兩條線段相等,此時(shí)點(diǎn)的坐標(biāo)_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線L:y=x2+bx+c經(jīng)過(guò)點(diǎn)M(2,﹣3),與y軸交于點(diǎn)C(0,﹣3).
(1)求拋物線L的表達(dá)式;
(2)試判斷拋物線L與x軸交點(diǎn)的情況;
(3)平移該拋物線,設(shè)平移后的拋物線為L′,拋物線L′的頂點(diǎn)記為P,它的對(duì)稱軸與x軸交于點(diǎn)Q,已知點(diǎn)N(2,﹣8),怎樣平移才能使得以M、N、P、Q為頂點(diǎn)的四邊形為菱形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一組數(shù)據(jù)3,4,4,5,若添加一個(gè)數(shù)4,則發(fā)生變化的統(tǒng)計(jì)量是( )
A.平均數(shù)B.眾數(shù)C.中位數(shù)D.方差
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】建筑工人用邊長(zhǎng)相等的正六邊形、正方形、正三角形三種瓷磚鋪設(shè)地面,正方形瓷磚分黑白兩種顏色,密鋪成圖(1)的形狀.用水泥澆筑前,為方便施工,工人要先把瓷磚按圖1方式先擺放好,一工人擺放時(shí),無(wú)意間將3塊黑色正方形瓷磚上翻到一個(gè)正六邊形的上面,其中三個(gè)正方形的一條邊分別和正六邊形的三條邊重合,如圖(2)所示.按圖(2)方式給各點(diǎn)作上標(biāo)注,若正方形的邊長(zhǎng),則_____(不考慮瓷磚的厚度)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com