【題目】已知函數(shù)y=﹣(x>0)與y=(x<0)的圖象如圖所示,點(diǎn)P是y軸負(fù)半軸上一動(dòng)點(diǎn),過(guò)點(diǎn)P作y軸的垂線交圖象于A、B兩點(diǎn),連接OA、OB.下列結(jié)論;①若點(diǎn)M1(x1,y1),M2(x2,y2)在圖象上,且x1<x2<0,則y1<y2;②當(dāng)點(diǎn)P坐標(biāo)為(0,﹣3)時(shí),△AOB是等腰三角形;③無(wú)論點(diǎn)P在什么位置,始終有S△AOB=7.5,AP=4BP;④當(dāng)點(diǎn)P移動(dòng)到使∠AOB=90°時(shí),點(diǎn)A的坐標(biāo)為(2,﹣).其中正確的結(jié)論為___.
【答案】②③④.
【解析】
①錯(cuò)誤.根據(jù)x1<x2<0時(shí),函數(shù)y隨x的增大而減小可得;
②正確.求出A、B兩點(diǎn)坐標(biāo)即可解決問(wèn)題;
③正確.設(shè)P(0,m),則B(,m),A(﹣,m),求出PA、PB,推出PA=4PB,由SAOB=S△OPB+S△OPA即可求出S△AOB=7.5;
④正確.設(shè)P(0,m),則B(,m),A(﹣,m),推出PB=﹣,PA=﹣,OP=﹣m,由△OPB∽△APO,可得OP2=PBPA,列出方程即可解決問(wèn)題.
解:①錯(cuò)誤.∵x1<x2<0,函數(shù)y隨x是增大而減小,
∴y1>y2,故①錯(cuò)誤.
②正確.∵P(0,﹣3),
∴B(﹣1,﹣3),A(4,﹣3),
∴AB=5,OA==5,
∴AB=AO,
∴△AOB是等腰三角形,故②正確.
③正確.設(shè)P(0,m),則B(,m),A(﹣,m),
∴PB=﹣,PA=﹣,
∴PA=4PB,
∵SAOB=S△OPB+S△OPA=+=7.5,故③正確.
④正確.設(shè)P(0,m),則B(,m),A(﹣,m),
∴PB=﹣,PA=﹣,OP=﹣m,
∵∠AOB=90°,∠OPB=∠OPA=90°,
∴∠BOP+∠AOP=90°,∠AOP+∠OAP=90°,
∴∠BOP=∠OAP,
∴△OPB∽△APO,
∴=,
∴OP2=PBPA,
∴m2=﹣(﹣),
∴m4=36,
∵m<0,
∴m=﹣,
∴A(2,﹣),故④正確.
∴②③④正確,
故答案為:②③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC與△CDE為等腰直角三角形,∠BAC=∠DEC=90°,連接AD,取AD中點(diǎn)P,連接BP,并延長(zhǎng)到點(diǎn)M,使BP=PM,連接AM、EM、AE,將△CDE繞點(diǎn)C順時(shí)針旋轉(zhuǎn).
(1)如圖①,當(dāng)點(diǎn)D在BC上,E在AC上時(shí),AE與AM的數(shù)量關(guān)系是______,∠MAE=______;
(2)將△CDE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)到如圖②所示的位置,(1)中的結(jié)論是否仍然成立,若成立,請(qǐng)給出證明,若不成立,請(qǐng)說(shuō)明理由;
(3)若CD=BC,將△CDE由圖①位置繞點(diǎn)C順時(shí)針旋轉(zhuǎn)α(0°<α<360°),當(dāng)ME=CD時(shí),請(qǐng)直接寫(xiě)出α的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=x+2與拋物線y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),點(diǎn)P是線段AB上異于A、B的動(dòng)點(diǎn),過(guò)點(diǎn)P作PC⊥x軸于點(diǎn)D,交拋物線于點(diǎn)C.
(1)求拋物線的解析式;
(2)是否存在這樣的P點(diǎn),使線段PC的長(zhǎng)有最大值,若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由;
(3)求PAC為直角三角形時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下圖為某小區(qū)的兩幢1O層住宅樓,由地面向上依次為第1層、第2層、…、第10層,每層的高度為3m,兩樓間的距離AC=30m.現(xiàn)需了解在某一時(shí)段內(nèi),甲樓對(duì)乙樓的采光的影響情況.假設(shè)某一時(shí)刻甲樓樓頂B落在乙樓的影子長(zhǎng)EC=h,太陽(yáng)光線與水平線的夾角為α.
(1)用含α的式子表示h;
(2)當(dāng)α=30°時(shí),甲樓樓頂B的影子落在乙樓的第幾層?從此時(shí)算起,若α每小時(shí)增加10°,幾小時(shí)后,甲樓的影子剛好不影響乙樓采光.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面的材料,回答問(wèn)題:
解方程,這是一個(gè)一元四次方程,根據(jù)該方程的特點(diǎn),它的解法通常是:設(shè),那么,于是原方程可變?yōu)?/span>①,解得,.
當(dāng)時(shí),,∴
當(dāng)時(shí),,∴
∴原方程有四個(gè)根:,,,.
(1)在由原方程得到方程①的過(guò)程中,利用________法達(dá)到________的目的,體現(xiàn)了數(shù)學(xué)的轉(zhuǎn)化思想.
(2)解方程.
(3)已知非零實(shí)數(shù)a,b滿足,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在矩形OABC中,OA=4,OC=3,分別以OC、OA所在的直線為x軸、y軸,建立如圖所示的坐標(biāo)系,連接OB,反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)線段OB的中點(diǎn)D,并與矩形的兩邊交于點(diǎn)E和點(diǎn)F,直線l:y=kx+b經(jīng)過(guò)點(diǎn)E和點(diǎn)F.
(1)求反比例函數(shù)的解析式;
(2)連接OE、OF,求△OEF的面積;
(3)在第一象限內(nèi),請(qǐng)直接寫(xiě)出關(guān)于x的不等式kx+b≤的解集: .
(4)如圖②,將線段OB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)一定角度,使得點(diǎn)B的對(duì)應(yīng)點(diǎn)H恰好落在x軸的正半軸上,連接BH,作OM⊥BH,點(diǎn)N為線段OM上的一個(gè)動(dòng)點(diǎn),求HN+ON的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某校落實(shí)新課改精神的情況,現(xiàn)以該校某班的同學(xué)參加課外活動(dòng)的情況為樣本,對(duì)其參加“球類”“繪畫(huà)類”“舞蹈類”“音樂(lè)類”“棋類”活動(dòng)的情況進(jìn)行調(diào)査統(tǒng)計(jì),并繪制了如圖所示的統(tǒng)計(jì)圖.
(1)參加音樂(lè)類活動(dòng)的學(xué)生人數(shù)為 人,參加球類活動(dòng)的人數(shù)的百分比為 ;
(2)請(qǐng)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校學(xué)生共1600人,那么參棋類活動(dòng)的大約有多少人?
(4)該班參加舞蹈類活動(dòng)4位同學(xué)中,有1位男生(用E表示)和3位女生(分別F,G,H表示),現(xiàn)準(zhǔn)備從中選取兩名同學(xué)組成舞伴,請(qǐng)用列表或畫(huà)樹(shù)狀的方法求恰好選中一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ABC=90°,∠BAC=30°,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)一定的角度得到△AED,點(diǎn)B、C的對(duì)應(yīng)點(diǎn)分別是E、D.
(1)如圖1,當(dāng)點(diǎn)E恰好在AC上時(shí),求∠CDE的度數(shù);
(2)如圖2,若=60°時(shí),點(diǎn)F是邊AC中點(diǎn),求證:四邊形BFDE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形 ABCD 是邊長(zhǎng)為 2,一個(gè)銳角等于 60°的菱形紙片,將一個(gè)∠EDF=60°的三角形紙片的一個(gè)頂點(diǎn)與該菱形頂點(diǎn) D 重合,按順時(shí)針?lè)较蛐D(zhuǎn)這個(gè)三角形紙片,使它的兩邊分別交 CB,BA(或它們的延長(zhǎng)線)于點(diǎn) E, F;
①當(dāng) CE=AF 時(shí),如圖①,DE 與 DF 的數(shù)量關(guān)系是 ;
②繼續(xù)旋轉(zhuǎn)三角形紙片,當(dāng) CE≠AF 時(shí),如圖②,(1)的結(jié)論是否成立?若成立,加以證明;若不成立,請(qǐng)說(shuō)明理由;
③再次旋轉(zhuǎn)三角形紙片,當(dāng)點(diǎn) E,F(xiàn) 分別在 CB,BA 的延長(zhǎng)線上時(shí),如圖③, 請(qǐng)直接寫(xiě)出 DE 與 DF 的數(shù)量關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com