分析 連結(jié)OB,根據(jù)角平分線定義得到∠OAB=∠ABO=29°,再根據(jù)等腰三角形的性質(zhì)得到∠ABC=∠ACB,再根據(jù)線段垂直平分線的性質(zhì)得到OA=OB,則∠OBA=∠OAB,所以得出∠1,由于AB=AC,OA平分∠BAC,根據(jù)等腰三角形的性質(zhì)得OA垂直平分BC,則BO=OC,所以得出∠1=∠2,然后根據(jù)折疊的性質(zhì)得到EO=EC,于是∠2=∠3,再根據(jù)三角形內(nèi)角和定理計(jì)算∠OEC,解答即可.
解答 解:連結(jié)OB,
∵∠BAC=58°,∠BAC的平分線與AB的中垂線交于點(diǎn)O,
∴∠OAB=∠ABO=29°,
∵AB=AC,∠BAC=58°,
∴∠ABC=∠ACB=61°,
∵OD垂直平分AB,
∴OA=OB,
∴∠OBA=∠OAB=29°,
∴∠1=61°-29°=32°,
∵AB=AC,OA平分∠BAC,
∴OA垂直平分BC,
∴BO=OC,
∴∠1=∠2=32°,
∵點(diǎn)C沿EF折疊后與點(diǎn)O重合,
∴EO=EC,
∴∠2=∠3=32°,
∴∠OEC=180°-32°-32°=116°.
∴∠BEO=180°-116°=64°.
故答案為64°.
點(diǎn)評(píng) 本題考查了折疊的性質(zhì):折疊是一種對(duì)稱(chēng)變換,它屬于軸對(duì)稱(chēng),折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等.也考查了線段的垂直平分線的性質(zhì)和等腰三角形的性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com