已知a>b>c>0,化簡(jiǎn):|a-b|-|c-a|+|b-c|-|a|
考點(diǎn):整式的加減,絕對(duì)值
專題:計(jì)算題
分析:根據(jù)題意判斷出絕對(duì)值里邊式子的正負(fù),利用絕對(duì)值的代數(shù)意義化簡(jiǎn),去括號(hào)合并即可得到結(jié)果.
解答:解:根據(jù)題意得:a-b>0,c-a<0,b-c>0,
則原式=a-b+c-a+b-c-a=-a.
點(diǎn)評(píng):此題考查了整式的加減,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

下列各組式子中是同類項(xiàng)的是( 。
A、-2a與a2
B、5ab2c與-b2ac
C、2a2b與3ab2
D、-17ab2和4ab2c

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知等腰梯形ABCD,AD∥BC,AB⊥AC,AB=AD=DC=4cm,點(diǎn)N在DC上,且CN=1cm,E是AB中點(diǎn),請(qǐng)?jiān)趯?duì)角線AC上找一點(diǎn)M使EM+MN的值最小,并求出EM+MN的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某中學(xué)2011年投資16萬元新增一批電腦,以后每年以相同的增長(zhǎng)率進(jìn)行投資,2013年投資25萬元.求該學(xué)校這兩年為新增電腦投資的年平均增長(zhǎng)率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,△ABC內(nèi)接于半徑為4cm的⊙O,AB為直徑,
BC
長(zhǎng)為
3
cm.

(1)計(jì)算∠ABC的度數(shù);
(2)設(shè)圖1中弓形(陰影部分)面積為S,求出S的值;
(3)將與△ABC全等的△FED如圖2擺放,使兩個(gè)三角形的對(duì)應(yīng)邊DF與AC有一部分重疊,△FED的最長(zhǎng)邊EF恰好經(jīng)過
AB
的中點(diǎn)M.求證:AF=AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

水果店運(yùn)回的蘋果比梨多60kg,蘋果和梨的質(zhì)量比是7:5,運(yùn)回的蘋果和梨各有多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖:O1為x軸上一點(diǎn),以O(shè)1為圓心作⊙O1交x軸于C、D兩點(diǎn),交y軸于M、N兩點(diǎn),∠CMD的外角平分線交⊙O1于點(diǎn)E,AB是弦,且AB∥CD,直線DM的解析式為y=3x+3.
(1)如圖1,求⊙O1半徑及點(diǎn)E的坐標(biāo).
(2)如圖2,過E作EF⊥BC于F,若A、B為弧CND上兩動(dòng)點(diǎn)且弦AB∥CD,試問:BF+CF與AC之間是否存在某種等量關(guān)系?請(qǐng)寫出你的結(jié)論,并證明.
(3)在(2)的條件下,EF交⊙O1于點(diǎn)G,問弦BG的長(zhǎng)度是否變化?若不變直接寫出BG的長(zhǎng)(不寫過程),若變化自畫圖說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

閱讀理解:課本在研究“圓周角和圓心角的關(guān)系”時(shí),有以下內(nèi)容.
【議一議】如圖1,其中O為圓心,觀察圓周角∠ABC與圓心角∠AOC,它們的大小有什么關(guān)系?說說你的想法,并與同伴交流.小亮首先考慮了一種特殊情況,即∠ABC的一邊BC經(jīng)過圓心O(圖2).
∵∠AOC是△ABO的外角,
∴∠AOC=∠ABO+∠BAO.
∵OA=OB,
∴∠ABO=∠BAO.
∴∠AOC=2∠ABO,
即∠ABC=
1
2
∠AOC.

如果∠ABC的兩邊都不經(jīng)過圓心O(圖1,圖3),那么結(jié)果會(huì)怎樣?你能將圖1與圖3的兩種情況分別轉(zhuǎn)化成圖2的情況去解決嗎?
自主證明:請(qǐng)?jiān)趫D1和圖3中選擇一種情況解決上述問題(即∠ABC與∠AOC的大小關(guān)系),寫出證明過程.
拓展探究:將圖1中的弦AB繞點(diǎn)B旋轉(zhuǎn),當(dāng)AB與⊙O相切時(shí)(圖4),試探究∠ABC與∠BOC的大小關(guān)系?寫出你的結(jié)論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,B為線段AD上一點(diǎn),△ABC和△BDE都是等邊三角形,連接CE并延長(zhǎng)交AD的延長(zhǎng)線于點(diǎn)F,△ABC的外接圓⊙O交CF于點(diǎn)P.
(1)求證:BE是⊙O的切線;
(2)若CP=2,PF=8,求AC的長(zhǎng);
(3)過點(diǎn)D作DG∥BE交EF于點(diǎn)G,過G作GH∥DE交DF于點(diǎn)H,則易知△DHG是等邊三角形;設(shè)等邊△ABC、△BDC、△DHG的面積分別為S1、S2、S3,試探究S1、S2、S3之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案