【題目】拋物線經(jīng)過(guò)點(diǎn),交軸于,兩點(diǎn),點(diǎn)是第一象限內(nèi)拋物線上一動(dòng)點(diǎn).
(1)直接寫出拋物線的解析式;
(2)如圖1,已知直線的解析式為,過(guò)點(diǎn)作直線的垂線,垂足為,當(dāng)時(shí),求點(diǎn)的坐標(biāo);
(3)如圖2,當(dāng)時(shí),求點(diǎn)的坐標(biāo).
【答案】(1);(2)點(diǎn)的坐標(biāo);(3)
【解析】
(1)利用待定系數(shù)法求解析式;(2)設(shè)直線交軸軸于點(diǎn),,作軸交直線于點(diǎn),根據(jù)題意得出PC的長(zhǎng)度,從而求解;
將, 代入解析式得, ,解得
拋物線的解析式為.
(2)設(shè)直線交軸軸于點(diǎn),,∴點(diǎn)的坐標(biāo),點(diǎn)的坐標(biāo),
∴,∴.
作軸交直線于點(diǎn),又,垂足為,
∴,∴,
設(shè)點(diǎn)點(diǎn)坐標(biāo)為(),則C點(diǎn)坐標(biāo)為()
∴.
∴,(舍去),∴點(diǎn)的坐標(biāo).
(3)作于,交于,于,
設(shè),由,得,,
在中,所以,可證,
∴,,∴,
設(shè)直線的解析式為,
,∴,,
設(shè)直線的解析式為.
將點(diǎn)的坐標(biāo)代入直線的解析式為,
可得:,∴,
∴(舍去),(舍去),,
∴.
∴P點(diǎn)坐標(biāo)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司研發(fā)了一款成本為50元的新型玩具,投放市場(chǎng)進(jìn)行試銷售.其銷售單價(jià)不低于成本,按照物價(jià)部門規(guī)定,銷售利潤(rùn)率不高于90%,市場(chǎng)調(diào)研發(fā)現(xiàn),在一段時(shí)間內(nèi),每天銷售數(shù)量y(個(gè))與銷售單價(jià)x(元)符合一次函數(shù)關(guān)系,如圖所示:
(1)根據(jù)圖象,直接寫出y與x的函數(shù)關(guān)系式;
(2)該公司要想每天獲得3000元的銷售利潤(rùn),銷售單價(jià)應(yīng)定為多少元
(3)銷售單價(jià)為多少元時(shí),每天獲得的利潤(rùn)最大,最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小剛準(zhǔn)備進(jìn)行如下操作試驗(yàn):把一根長(zhǎng)為80cm的鐵絲剪成兩段,并把每一段各圍成一個(gè)正方形.要使這兩個(gè)正方形的面積之和等于272cm2,小剛該怎么剪?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,池塘邊一棵垂直于水面BM的筆直大樹AB在點(diǎn)C處折斷,AC部分倒下,點(diǎn)A與水面上的點(diǎn)E重合,部分沉入水中后,點(diǎn)A與水中的點(diǎn)F重合,CF交水面于點(diǎn)D,DF=2m,∠CEB=30°,∠CDB=45°,求CB部分的高度.(精確到0.1m.參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一副含和角的三角板和拼合在一個(gè)平面上,邊與重合,.當(dāng)點(diǎn)從點(diǎn)出發(fā)沿方向滑動(dòng)時(shí),點(diǎn)同時(shí)從點(diǎn)出發(fā)沿射線方向滑動(dòng).當(dāng)點(diǎn)從點(diǎn)滑動(dòng)到點(diǎn)時(shí),點(diǎn)運(yùn)動(dòng)的路徑長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以AB為直徑的⊙O交∠BAD的角平分線于C,過(guò)C作CD⊥AD于D,交AB的延長(zhǎng)線于E.
(1)求證:直線CD為⊙O的切線;
(2)當(dāng)AB=2BE,且CE=時(shí),求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=﹣2x2﹣4x+6.
(1)用配方法求出函數(shù)的頂點(diǎn)坐標(biāo);
(2)將該二次函數(shù)圖象向右平移幾個(gè)單位,可使平移后所得圖象經(jīng)過(guò)坐標(biāo)原點(diǎn)?并直接寫出平移后所得圖象與x軸的另一個(gè)交點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,對(duì)于點(diǎn)P(x,y)和Q(x,y′),給出如下定義:若y′=,則稱點(diǎn)Q為點(diǎn)P的“親密點(diǎn)”.例如:點(diǎn)(1,2)的“親密點(diǎn)”為點(diǎn)(1,3),點(diǎn)(﹣1,3)的“親密點(diǎn)”為點(diǎn)(﹣1,﹣3).若點(diǎn)P在函數(shù)y=x2﹣2x﹣3的圖象上,則其“親密點(diǎn)”Q的縱坐標(biāo)y′關(guān)于x的函數(shù)圖象大致正確的是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】校園空地上有一面墻,長(zhǎng)度為20m,用長(zhǎng)為32m的籬笆和這面墻圍成一個(gè)矩形花圃,如圖所示.
(1)能圍成面積是126m2的矩形花圃嗎?若能,請(qǐng)舉例說(shuō)明;若不能,請(qǐng)說(shuō)明理由.
(2)若籬笆再增加4m,圍成的矩形花圃面積能達(dá)到170m2嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com