【題目】如圖,中,點是邊上一個動點,過作直線.設(shè)的平分線于點,交的外角平分線于點

1)求證:;

2)若,求的長;

3)當(dāng)點在邊上運動到什么位置時,四邊形是矩形?并說明理由.

【答案】1)見解析;(2;(3)當(dāng)的中點時,四邊形是矩形,理由見解析

【解析】

1)由角平分線的定義結(jié)合平行線的性質(zhì)可求得OE=OC=OF
2)利用勾股定理可求得EF的長,再結(jié)合(1)的結(jié)論可求得OC的長;
3)只要保證四邊形AECF是平行四邊形即可,則可知OAC的中點時,滿足條件.

解:(1)證明:∵平分,

,

,

,

同理可得

;

2)解:∵分別平分,

,

3)解:當(dāng)的中點時,四邊形是矩形,

理由如下:

當(dāng)中點時,則有

∴四邊形為平行四邊形,

∴四邊形為矩形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,EBC邊上一點.且BE=EC,BD,AE相交于點F.

(1)求△BEF的周長與△AFD的周長之比;

(2)若△BEF的面積S△BEF=6cm2.求△AFD的面積S△AFD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線AB與直線BC相交于點,直線AB軸相交于點,直線BC軸、軸分別相交于點、點C

1)求直線AB的解析式;

2)過點ABC的平行線交軸于點E,求點E的坐標;

3)在(2)的條件下,點P是直線AB上一動點且在軸的上方,如果以點D、EP、Q為頂點的平行四邊形的面積等于△ABC,請求出點P的坐標,并直接寫出點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)yy1+y2,y1x成正比例,y2x成反比例,且當(dāng)x=1時,y=4;當(dāng)x=2時,y=5. yx之間的函數(shù)關(guān)系式_____,當(dāng)x=4時,求y_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)ykx+b與反比例函數(shù)y的圖象交于A(1,4)B(4n)兩點.

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)直接寫出當(dāng)x0時,kx+b的解集.

(3)Px軸上的一動點,試確定點P并求出它的坐標,使PA+PB最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AC為直徑的⊙OBC于點D,交AB于點E,過點DDFAB,垂足為F,連接DE.

(1)求證:直線DF與⊙O相切;

(2)求證:BF=EF;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(3分)如圖,在菱形ABCD中,B=60°,AB=1,延長AD到點E,使DE=AD,延長CD到點F,使DF=CD,連接AC、CE、EF、AF,則下列描述正確的是(

A四邊形ACEF是平行四邊形,它的周長是4

B四邊形ACEF是矩形,它的周長是

C四邊形ACEF是平行四邊形,它的周長是

D四邊形ACEF是矩形,它的周長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,可以自由轉(zhuǎn)動的轉(zhuǎn)盤被它的兩條直徑分成了四個分別標有數(shù)字的扇形區(qū)域,其中標有數(shù)字“1”的扇形圓心角為120°.轉(zhuǎn)動轉(zhuǎn)盤,待轉(zhuǎn)盤自動停止后,指針指向一個扇形的內(nèi)部,則該扇形內(nèi)的數(shù)字即為轉(zhuǎn)出的數(shù)字,此時,稱為轉(zhuǎn)動轉(zhuǎn)盤一次(若指針指向兩個扇形的交線,則不計轉(zhuǎn)動的次數(shù),重新轉(zhuǎn)動轉(zhuǎn)盤,直到指針指向一個扇形的內(nèi)部為止)

(1)轉(zhuǎn)動轉(zhuǎn)盤一次,求轉(zhuǎn)出的數(shù)字是-2的概率;

(2)轉(zhuǎn)動轉(zhuǎn)盤兩次,用樹狀圖或列表法求這兩次分別轉(zhuǎn)出的數(shù)字之積為正數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC與△A'B'C'中,∠A=∠A',BD、CE是△ABC的高,B'D'、C'E'是△A'B'C'的高,點D、E、D'、E'分別在AC、AB、A'C'、A'B'上,且

求證:

查看答案和解析>>

同步練習(xí)冊答案