【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x與反比例函數(shù)y=(k≠0)在第二象限內(nèi)的圖象相交于點(diǎn)A(m,1).
(1)求反比例函數(shù)的解析式;
(2)將直線y=﹣x向上平移后與反比例函數(shù)圖象在第二象限內(nèi)交于點(diǎn)B,與y軸交于點(diǎn)C,且△ABO的面積為,求直線BC的解析式.
【答案】(1)y=﹣;(2)y=﹣x+.
【解析】
(1)將A點(diǎn)坐標(biāo)代入直線y=-x中求出m的值,確定出A的坐標(biāo),將A的坐標(biāo)代入反比例解析式中求出k的值,即可確定出反比例函數(shù)的解析式;
(2)根據(jù)直線的平移規(guī)律設(shè)直線BC的解析式為y=-x+b,由同底等高的兩三角形面積相等可得△ACO與△ABO面積相等,根據(jù)△ABO的面積為列出方程OC2=,解方程求出OC=,即b=,進(jìn)而得出直線BC的解析式.
(1)∵直線y=﹣x過點(diǎn)A(m,1),
∴﹣m=1,解得m=﹣2,
∴A(﹣2,1).
∵反比例函數(shù)y=(k≠0)的圖象過點(diǎn)A(﹣2,1),
∴k=﹣2×1=﹣2,
∴反比例函數(shù)的解析式為y=﹣;
(2)設(shè)直線BC的解析式為y=﹣x+b,
∵三角形ACO與三角形ABO面積相等,且△ABO的面積為,
∴△ACO的面積=OC2=,
∴OC=,
∴b=,
∴直線BC的解析式為y=﹣x+.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α(0°<α<360°),得到矩形AEFG.
(1)如圖,當(dāng)點(diǎn)E在BD上時(shí).求證:FD=CD;
(2)當(dāng)α為何值時(shí),GC=GB?畫出圖形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+2ax+c(a>0,c<0),與x軸交于A、B兩點(diǎn)(A在B左側(cè)),與y軸交于點(diǎn)C,A點(diǎn)坐標(biāo)為(﹣3,0),拋物線頂點(diǎn)為D,△ACD的面積為3.
(1)求二次函數(shù)解析式;
(2)點(diǎn)P(m,n)是拋物線第三象限內(nèi)一點(diǎn),P關(guān)于原點(diǎn)的對稱點(diǎn)Q在第一象限內(nèi),當(dāng)QB2取最小值時(shí),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:二次函數(shù)y=x2+bx+c 的圖象與x軸交于A,B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(-3,0),與 y 軸交于點(diǎn) C(0,-3)在拋物線上.
(1)求拋物線的表達(dá)式;
(2)拋物線的對稱軸上有一動(dòng)點(diǎn) P,求出當(dāng) PB+PC 最小時(shí)點(diǎn) P的坐標(biāo);
(3)若拋物線上有一動(dòng)點(diǎn)Q,使△ABQ的面積為6,求Q點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則以下結(jié)論同時(shí)成立的是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x軸,∠ABC=135°,且AB=4.
(1)填空:拋物線的頂點(diǎn)坐標(biāo)為 (用含m的代數(shù)式表示);
(2)求△ABC的面積(用含a的代數(shù)式表示);
(3)若△ABC的面積為2,當(dāng)2m﹣5≤x≤2m﹣2時(shí),y的最大值為2,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD的四個(gè)頂點(diǎn)分別在反比例函數(shù)與(x>0,0<m<n)的圖象上,對角線BD//y軸,且BD⊥AC于點(diǎn)P.已知點(diǎn)B的橫坐標(biāo)為4.
(1)當(dāng)m=4,n=20時(shí).
①若點(diǎn)P的縱坐標(biāo)為2,求直線AB的函數(shù)表達(dá)式.
②若點(diǎn)P是BD的中點(diǎn),試判斷四邊形ABCD的形狀,并說明理由.
(2)四邊形ABCD能否成為正方形?若能,求此時(shí)m,n之間的數(shù)量關(guān)系;若不能,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017浙江省湖州市,第16題,4分)如圖,在平面直角坐標(biāo)系xOy中,已知直線y=kx(k>0)分別交反比例函數(shù)和在第一象限的圖象于點(diǎn)A,B,過點(diǎn)B作 BD⊥x軸于點(diǎn)D,交的圖象于點(diǎn)C,連結(jié)AC.若△ABC是等腰三角形,則k的值是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為6,點(diǎn)A,B,C為⊙O上三點(diǎn),BA平分∠OBC,過點(diǎn)A作AD⊥BC交BC延長線于點(diǎn)D.
(1)求證:AD是⊙O的切線;
(2)當(dāng)sin∠OBC=時(shí),求BC的長;
(3)連結(jié)AC,當(dāng)AC∥OB時(shí),求圖中陰影部分的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com