【題目】積極響應(yīng)市委市政府“加快建設(shè)綠水青山的美麗樂(lè)山”的號(hào)召,我市某街道決定從備選的五種樹(shù)中選購(gòu)一種進(jìn)行栽種.為了更好地了解社情民意,工作人員在街道轄區(qū)范圍內(nèi)隨機(jī)抽取了部分居民,進(jìn)行“我最喜歡的一種樹(shù)”的調(diào)查活動(dòng)(每人限選其中一種樹(shù)),并將調(diào)查結(jié)果整理后,繪制成如圖所示兩個(gè)不完整的統(tǒng)計(jì)圖:
請(qǐng)根據(jù)所給信息解答以下問(wèn)題:
(1)這次參與調(diào)查的居民人數(shù)為______;
(2)請(qǐng)將條形和扇形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)請(qǐng)計(jì)算扇形統(tǒng)計(jì)圖中“楓樹(shù)”所在扇形的圓心角度數(shù);
(4)已知該街道轄區(qū)內(nèi)現(xiàn)有居民2萬(wàn)人,請(qǐng)你估計(jì)這2萬(wàn)人中最喜歡玉蘭樹(shù)的有多少人.
【答案】(1)1000人; (2)補(bǔ)充條形圖、扇形圖, 見(jiàn)解析;(3)36°;(4) 5000人.
【解析】
(1)根據(jù)“銀杏樹(shù)”的人數(shù)及其百分比可得總?cè)藬?shù);
(2)將總?cè)藬?shù)減去選擇其它4種樹(shù)的人數(shù)可得“樟樹(shù)”的人數(shù),補(bǔ)全條形圖即可;
(3)用樣本中“楓樹(shù)”占總?cè)藬?shù)的比例乘以360°可得;
(4)用樣本中最喜歡“玉蘭樹(shù)”的比例乘以總?cè)藬?shù)可得.
解:解:(1)這次參與調(diào)查的居民人數(shù)有(人);
(2)選擇“樟樹(shù)”的有(人),
補(bǔ)全條形圖如圖:
(3),
答:扇形統(tǒng)計(jì)圖中“楓樹(shù)”所在扇形的圓心角度數(shù)為36°;
(4) (人)
答:估計(jì)這2萬(wàn)人中最喜歡玉蘭樹(shù)的約有5000人.
故答案為:(1)1000人; (2)150,補(bǔ)充條形圖、扇形圖, 見(jiàn)解析;(3)36°;(4) 5000人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠ABC的平分線(xiàn)BE交AC于點(diǎn)E,過(guò)點(diǎn)E作直線(xiàn)BE的垂線(xiàn)交AB于點(diǎn)F,⊙O是△BEF的外接圓.
(1)求證:AC是⊙O的切線(xiàn);
(2)過(guò)點(diǎn)E作EH⊥AB于點(diǎn)H,求證:EF平分∠AEH;
(3)求證:CD=HF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】市教育局在全市中小學(xué)推廣某學(xué)校“品格教育”科研成果,其中“敬老孝親”是“品格教育”亮點(diǎn)之一. 重陽(yáng)節(jié)(農(nóng)歷九月初九)快到了,某校八年級(jí)(1)班班委發(fā)起為老人們獻(xiàn)上真摯的節(jié)日祝;顒(dòng),決定全班同學(xué)利用課余時(shí)間去賣(mài)鮮花籌集慰問(wèn)金.已知同學(xué)們從花店按每支1.5元買(mǎi)進(jìn)鮮花,并按每支4.5元賣(mài)出.
(1)求同學(xué)們賣(mài)出鮮花的銷(xiāo)售額(元)與銷(xiāo)售量(支)之間的函數(shù)關(guān)系式;
(2)若從花店購(gòu)買(mǎi)鮮花的同時(shí),還總共用去40元購(gòu)買(mǎi)包裝材料,求所籌集的慰問(wèn)金(元)與銷(xiāo)售量(支)之間的函數(shù)關(guān)系式;若要籌集不少于500元的慰問(wèn)金,則至少要賣(mài)出鮮花多少支?(慰問(wèn)金 = 銷(xiāo)售額 - 成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正比例函數(shù)與一次函數(shù)的圖象相交于點(diǎn).過(guò)點(diǎn)作軸的垂線(xiàn),分別交正比例函數(shù)的圖象于點(diǎn),交一次函數(shù)的圖象于點(diǎn),連接.
(1)求這兩個(gè)函數(shù)的表達(dá)式;
(2)求的面積;
(3)在軸上是否存在一點(diǎn),使為直角三角形?若存在,請(qǐng)直接寫(xiě)出滿(mǎn)足條件的所有點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在矩形中,,,是線(xiàn)段邊上的任意一點(diǎn)(不含端點(diǎn)、),連接,過(guò)點(diǎn)作交于.
在線(xiàn)段上是否存在不同于的點(diǎn),使得?若存在,求線(xiàn)段與之間的數(shù)量關(guān)系;若不存在,請(qǐng)說(shuō)明理由;
當(dāng)點(diǎn)在上運(yùn)動(dòng)時(shí),對(duì)應(yīng)的點(diǎn)也隨之在上運(yùn)動(dòng),求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,是外一點(diǎn),,分別和切于,兩點(diǎn),是上任意一點(diǎn),過(guò)作的切線(xiàn)分別交,于,.
若的周長(zhǎng)為,則的長(zhǎng)為________;
連接、,若,則的度數(shù)為________度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點(diǎn).
(1)求證:△ACE≌△BCD;
(2)求證:2CD2=AD2+DB2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),在矩形ABCD中,AB=6,sin∠BAC=
(1)BC長(zhǎng)=_____;
(2)若點(diǎn)P是線(xiàn)段AC上一點(diǎn),當(dāng)△PCD是等腰三角形時(shí),求AP的長(zhǎng);
(3)如圖(2),點(diǎn)E是邊BC上一點(diǎn),且PE⊥PD.則:①=_____;
②如圖(3)分別以PE、PD為邊作矩形PEFD,若AP=2,求CF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,△DEF中,∠DEF=90°,∠D=30°,DF=16,B是斜邊DF上一動(dòng)點(diǎn),過(guò)B作AB⊥DF于B,交邊DE(或邊EF)于點(diǎn)A,設(shè)BD=x,△ABD的面積為y,則y與x之間的函數(shù)圖象大致為( )
A. (A) B. (B) C. (C) D. (D)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com