【題目】如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,∠B=∠DCA,AD∥BC,連結(jié)OD,AC,且OD與AC相交于點(diǎn)E.
(1)求證:CD與⊙O相切;
(2)若⊙O的半徑為4,且=,求tan∠DCA的值.
【答案】(1)見(jiàn)解析 (2)
【解析】
(1)連接OC,易證∠DCA=∠OCB,由于∠ACO+∠OCB=90°,所以∠ACO+∠DCA=90°,即∠DCO=90°,從而可證CD與⊙O相切;
(2) 過(guò)點(diǎn)O作OF∥BC,交CD于點(diǎn)F,交AC于點(diǎn)G,由于△AED∽△GEO,再利用對(duì)應(yīng)邊成比例,設(shè)AD=5x,OG=2x,進(jìn)一步證明△ADC∽△CAB,所以AC2=ADBC,所以AC=,最后根據(jù)銳角三角函數(shù)即可求出tan∠B的值.
解:(1)連接OC,如下圖所示:
∵OC=OB,
∴∠OCB=∠B,
∵∠B=∠DCA,
∴∠DCA=∠OCB,
∵∠ACO+∠OCB=90°,
∴∠ACO+∠DCA=90°,
即∠DCO=90°,
∵OC是⊙O的半徑,
∴CD是⊙O的切線;
(2)過(guò)點(diǎn)O作OF∥BC,交CD于點(diǎn)F,交AC于點(diǎn)G,
∵AD∥BC,
∴AD∥OG,
∴△AED∽△GEO,
,
設(shè)AD=5x,OG=2x,
∵∠ACB=90°,
∴由垂徑定理可知:點(diǎn)G為AC的中點(diǎn),
∴OG是△ACB的中位線,
∴BC=2OG=4x,
∵∠B=∠DCA,∠DAC=∠ACB=90°,
∴△ADC∽△CAB
∴,
∴AC2=AD×BC,
∴AC=,
∴tan∠B=.
故答案為:tan∠B=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為阻斷新冠疫情向校園蔓延,確保師生生命安全和身體健康,教育部通知,2020年春季學(xué)期延期開(kāi)學(xué),利用網(wǎng)上平臺(tái),停課不停學(xué)”,某校對(duì)初三全體學(xué)生數(shù)學(xué)線上學(xué)習(xí)情況進(jìn)行調(diào)查,隨機(jī)抽取部分學(xué)生的4月月診斷性測(cè)試成績(jī),按由高到低分為A,B,C,D四個(gè)等級(jí),根據(jù)調(diào)查的數(shù)據(jù)繪制成如下的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息,解答下列問(wèn)題:
(1)該校共抽查了 名同學(xué)的數(shù)學(xué)測(cè)試成績(jī),扇形統(tǒng)計(jì)圖中A等級(jí)所占的百分比a= ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校初三共有1180名同學(xué),請(qǐng)估計(jì)該校初三學(xué)生數(shù)學(xué)測(cè)試成績(jī)優(yōu)秀(測(cè)試成績(jī)B級(jí)以上為優(yōu)秀,含B級(jí))約有 名;
(4)該校老師想從兩男、兩女四位學(xué)生中隨機(jī)選擇兩位了解平時(shí)線上學(xué)習(xí)情況,請(qǐng)用列表或畫(huà)樹(shù)形圖的方法求出恰好選中一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線經(jīng)過(guò),兩點(diǎn),與x軸的另一個(gè)交點(diǎn)為C,頂點(diǎn)為D,連結(jié)CD.
(1)求該拋物線的表達(dá)式;
(2)點(diǎn)P為該拋物線上一動(dòng)點(diǎn)(與點(diǎn)B、C不重合),設(shè)點(diǎn)P的橫坐標(biāo)為t.
①當(dāng)點(diǎn)P在直線BC的下方運(yùn)動(dòng)時(shí),求的面積的最大值;
②該拋物線上是否存在點(diǎn)P,使得若存在,求出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,BC是⊙O的直徑,OE⊥BC交AB于點(diǎn)E,若BE=2AE,則∠ADC =_________°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是直經(jīng),D是的中點(diǎn),DE⊥AC交AC的延長(zhǎng)線于E,⊙O的切線BF交AD的延長(zhǎng)線于點(diǎn)F.
(1)求證:DE是⊙O的切線.
(2)試探究AE,AD,AB三者之間的等量關(guān)系.
(3)若DE=3,⊙O的半徑為5,求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣2x﹣3經(jīng)過(guò)點(diǎn)A(﹣2,a),與x軸相交于B、C兩點(diǎn)(B點(diǎn)在C點(diǎn)左側(cè)).
(1)求a的值及B、C兩點(diǎn)坐標(biāo);
(2)點(diǎn)D在拋物線的對(duì)稱軸上,且位于x軸的上方,將△BCD沿直線BD翻折得到△BD,若點(diǎn)恰好落在拋物線的對(duì)稱軸上,求點(diǎn)和點(diǎn)D的坐標(biāo);
(3)設(shè)P(m,-3)是該拋物線上一點(diǎn),點(diǎn)Q為拋物線的頂點(diǎn),在x軸、y軸分別找點(diǎn)M、N,使四邊形MNQP的周長(zhǎng)最小,請(qǐng)求出點(diǎn)M、N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知頂點(diǎn)為的拋物線過(guò)點(diǎn),交軸于兩點(diǎn),交軸于點(diǎn),點(diǎn)是拋物線上一動(dòng)點(diǎn).
求拋物線的解析式;
當(dāng)點(diǎn)在直線上方時(shí),求面積的最大值,并求出此時(shí)點(diǎn)的坐標(biāo);
過(guò)點(diǎn)作直線的垂線,垂足為,若將沿翻折點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn).是否存在點(diǎn),使恰好落在軸上?若存在,求出點(diǎn)的坐標(biāo):若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)P在BC上.
(1)求作:△PCD,使點(diǎn)D在AC上,且△PCD∽△ABP;(要求:尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法)
(2)在(1)的條件下,若∠APC=2∠ABC,求證:PD//AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某中心廣場(chǎng)燈柱AB被鋼纜CD固定,已知CB=5米,且sin∠DCB=.
(1)求鋼纜CD的長(zhǎng)度。
(2)若AD=2米,燈的頂端E距離A處1.6米,且∠EAB=120°,則燈的頂端E距離地面多少米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com