【題目】如圖,等腰中,,,點是邊上不與點,重合的一個動點,直線垂直平分,垂足為,當(dāng)是直角三角形時,的長為______.
【答案】2或
【解析】
分兩種情況討論:
①當(dāng)∠AFC=90°時,AF⊥BC,利用等腰三角形的三線合一性質(zhì)和垂直平分線的性質(zhì)可解;
②當(dāng)∠CAF=90°時,過點A作AM⊥BC于點M,證明△AMC∽△FAC,列比例式求出FC,從而得BF,再利用垂直平分線的性質(zhì)得BD.
①當(dāng)∠AFC=90°時,AF⊥BC,
∵AB=AC,
∴BF=BC=4
∵DE垂直平分BF,
∴BD=BF=2;
②當(dāng)∠CAF=90°時,過點A作AM⊥BC于點M,
∵AB=AC,
∴BM=CM,
在Rt△AMC與Rt△FAC中,∠AMC=∠FAC=90°,∠C=∠C,
∴△AMC∽△FAC,
∴
∵AC=10,MC=BC=4,
∴
∴BF=BC-FC=
∴BD=BF= .
故答案為2或 .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國東漢初年編訂的一部數(shù)學(xué)經(jīng)典著作.在它的“方程”一章里,一次方程組是由算籌布置而成的.《九章算術(shù)》中的算籌圖是豎排的,為看圖方便,我們把它改為橫排,如圖1、圖2.圖中各行從左到右列出的算籌數(shù)分別表示未知數(shù)x,y的系數(shù)與相應(yīng)的常數(shù)項.把圖1所示的算籌圖用我們現(xiàn)在所熟悉的方程組形式表述出來,就是,類似地,圖2所示的算籌圖我們可以表述為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣x+4與坐標(biāo)軸交于A,B兩點,OC⊥AB于點C,P是線段OC上的一個動點,連接AP,將線段AP繞點A逆時針旋轉(zhuǎn)45°,得到線段AP',連接CP',則線段CP'的最小值為( )
A.B.1C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在矩形ABCD中,AD=nAB,點M,P分別在邊AB,AD上(均不與端點重合),且AP=nAM,以AP和AM為鄰邊作矩形AMNP,連接AN,CN.
(問題發(fā)現(xiàn))
(1)如圖(2),當(dāng)n=1時,BM與PD的數(shù)量關(guān)系為 ,CN與PD的數(shù)量關(guān)系為 .
(類比探究)
(2)如圖(3),當(dāng)n=2時,矩形AMNP繞點A順時針旋轉(zhuǎn),連接PD,則CN與PD之間的數(shù)量關(guān)系是否發(fā)生變化?若不變,請就圖(3)給出證明;若變化,請寫出數(shù)量關(guān)系,并就圖(3)說明理由.
(拓展延伸)
(3)在(2)的條件下,已知AD=4,AP=2,當(dāng)矩形AMVP旋轉(zhuǎn)至C,N,M三點共線時,請直接寫出線段CN的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,蘭蘭站在河岸上的G點,看見河里有一只小船沿垂直于岸邊的方向劃過來,此時,測得小船C的俯角是∠FDC=30°,若蘭蘭的眼睛與地面的距離是1.5米,BG=1米,BG平行于AC所在的直線,迎水坡的坡度i=4:3,坡高BE=8米,求小船C到岸邊的距離CA的長.(參考數(shù)據(jù):≈1.7,結(jié)果保留一位小數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小強每天堅持引體向上鍛煉,他記錄了某一周每天做引體向上的個數(shù),如下表:
星期 | 日 | 一 | 二 | 三 | 四 | 五 | 六 |
個數(shù) | 11 | 12 | 13 | 12 |
其中有三天的個數(shù)墨汁覆蓋了,但小強己經(jīng)計算出這組數(shù)據(jù)唯一眾數(shù)是13,平均數(shù)是12,那么這組數(shù)據(jù)的方差是( )
A.B.C.1D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是☉的直徑,為☉上一點,是半徑上一動點(不與重合),過點作射線,分別交弦,于兩點,過點的切線交射線于點.
(1)求證:.
(2)當(dāng)是的中點時,
①若,判斷以為頂點的四邊形是什么特殊四邊形,并說明理由;
②若,且,則_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,折疊矩形,具體操作:①點為邊上一點(不與、重合),把沿所在的直線折疊,點的對稱點為點;②過點對折,折痕所在的直線交于點、點的對稱點為點.
(1)求證:∽.
(2)若,.
①點在移動的過程中,求的最大值.
②如圖2,若點恰在直線上,連接,求線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)經(jīng)過點 經(jīng)過點A(﹣1,0),B(5,﹣6),C(6,0)
(1)求拋物線的解析式;
(2)如圖,在直線AB下方的拋物線上是否存在點P使四邊形PACB的面積最大?若存在,請求出點P的坐標(biāo);若不存在,請說明理由;
(3)若點Q為拋物線的對稱軸上的一個動點,試指出△QAB為等腰三角形的點Q一共有幾個?并請求出其中某一個點Q的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com