【題目】閱讀下面的文字,解答問題:大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部寫出來,于是小明用來表示的小數(shù)部分,你同意小明的表示方法嗎?事實上,小明的表示方法是有道理的,因為的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是小數(shù)部分.又例如:∵22<7<3,即2<<3,∴的整數(shù)部分為2,小數(shù)部分為﹣2.
請解答:
(1) 的整數(shù)部分是 ,小數(shù)部分是 .
(2)如果的小數(shù)部分為a, 的整數(shù)部分為b,求a+b-的值;
(3)已知:x是3+的整數(shù)部分,y是其小數(shù)部分,請直接寫出x﹣y的值的相反數(shù).
【答案】(1)3; ﹣3;(2)4;(3)7﹣ ,其相反數(shù)是﹣7.
【解析】試題分析:(1)求出的范圍是3<<4,根據(jù)題目中所給的方法即可求出答案;
(2)求出的范圍是2<<3,求出的范圍是6<<7,根據(jù)題目中所給的方法求得a、b的值,再代入求值即可;(3)求出的范圍,推出3+的范圍,結合題目中所給的方法求出x、y的值,代入即可.
試題解析:
(1)的整數(shù)部分是3,小數(shù)部分是﹣3;
故答案為:3;﹣3;
(2)∵4<5<9,
∴2<<3,即a=﹣2,
∵36<37<49,
∴6<<7,即b=6,
則a+b﹣=4;
(3)根據(jù)題意得:x=5,y=3+﹣5=﹣2,
∴x﹣y=7﹣,其相反數(shù)是﹣7.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,∠B=∠C,AB=8厘米,BC=6厘米,點D為AB的中點.如果點P在線段BC上以每秒2厘米的速度由B點向C點運動,同時,點Q在線段CA上以每秒a厘米的速度由C點向A點運動,設運動時間為t(秒)(0≤t≤3).
(1)用的代數(shù)式表示PC的長度;
(2)若點P、Q的運動速度相等,經過1秒后,△BPD與△CQP是否全等,請說明理由;
(3)若點P、Q的運動速度不相等,當點Q的運動速度a為多少時,能夠使△BPD與△CQP全等?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】榮昌公司要將本公司100噸貨物運往某地銷售,經與春晨運輸公司協(xié)商,計劃租用甲、乙兩種型號的汽車共6輛,用這6輛汽車一次將貨物全部運走,其中每輛甲型汽車最多能裝該種貨物16噸,每輛乙型汽車最多能裝該種貨物18噸.已知租用1輛甲型汽車和2輛乙型汽車共需費用2500元;租用2輛甲型汽車和1輛乙型汽車共需費用2450元,且同一種型號汽車每輛租車費用相同.
(1)求租用一輛甲型汽車、一輛乙型汽車的費用分別是多少元?
(2)若榮昌公司計劃此次租車費用不超過5000元.通過計算求出該公司有幾種租車方案?請你設計出來,并求出最低的租車費用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點P(x+1,x-2)在x軸上,則點P的坐標是( 。
A.(3,0)B.(0,-3)C.(0,-1)D.(-1,0)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖數(shù)在線的A、B、C三點所表示的數(shù)分別為a、b、c.根據(jù)圖中各點位置,判斷下列各式何者正確( )
A. (a﹣1)(b﹣1)>0 B. (b﹣1)(c﹣1)>0 C. (a+1)(b+1)<0 D. (b+1)(c+1)<0
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AM∥BN,∠A=60°.點P是射線AM上一動點(與點A不重合),BC、BD分別平分∠ABP和∠PBN,分別交射線AM于點C,D.
(1)求∠CBD的度數(shù);
(2)當點P運動時,∠APB與∠ADB之間的數(shù)量關系是否隨之發(fā)生變化?若不變化,請寫出它們之間的關系,并說明理由;若變化,請寫出變化規(guī)律.
(3)當點P運動到使∠ACB=∠ABD時,∠ABC的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直角△ABC中,∠A為直角,AB=6,AC=8.點P,Q,R分別在AB,BC,CA邊上同時開始作勻速運動,2秒后三個點同時停止運動,點P由點A出發(fā)以每秒3個單位的速度向點B運動,點Q由點B出發(fā)以每秒5個單位的速度向點C運動,點R由點C出發(fā)以每秒4個單位的速度向點A運動,在運動過程中:
(1)求證:△APR,△BPQ,△CQR的面積相等;
(2)求△PQR面積的最小值;
(3)用t(秒)(0≤t≤2)表示運動時間,是否存在t,使∠PQR=90°?若存在,請直接寫出t的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com