【題目】在⊙O 中,P是⊙O內(nèi)一點(diǎn),過點(diǎn)P最短和最長的弦分別為6和10,則經(jīng)過點(diǎn)P且長度為整數(shù)的的弦共有( )條。
A.5
B.8
C.10
D.無數(shù)條
【答案】B
【解析】如圖,AB是直徑,OA=5cm,OP=4cm,過點(diǎn)P作CD⊥AB,交圓于點(diǎn)C,D兩點(diǎn).
由垂徑定理知,點(diǎn)P是CD的中點(diǎn),由勾股定理求得,PC=3cm,CD=6cm,則CD是過點(diǎn)P最短的弦,長為6cm;
AB是過P最長的弦,長為10cm.
由圓的對(duì)稱性知,過點(diǎn)P的弦的弦長長度為7cm,8cm,9cm的弦分別有2條,過點(diǎn)P的弦的弦長是6cm,10cm的各有1條,則總共有6+2=8條長度為整數(shù)的弦.
所以答案是:B.
【考點(diǎn)精析】利用垂徑定理對(duì)題目進(jìn)行判斷即可得到答案,需要熟知垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,下列能判定AB∥CD的條件有( )個(gè).
(1)∠B+∠BDC=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.
A.1B.2C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),點(diǎn) 為第一象限內(nèi)一點(diǎn),點(diǎn)在軸正半軸上,且.
(1)求點(diǎn)的坐標(biāo);
(2)動(dòng)點(diǎn)以每秒2個(gè)單位長度的速度,從點(diǎn)出發(fā),沿軸正半軸勻速運(yùn)動(dòng),設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為秒,的面積為,請用含有的式子表示,并直接寫出的取值范圍;
(3)如圖2,在(2)的條件下,點(diǎn)坐標(biāo)為,連接,過點(diǎn)作軸的垂線交于點(diǎn),過點(diǎn) 作軸的平行線,在點(diǎn)的運(yùn)動(dòng)過程中,直線上是否存在一點(diǎn),使是以為腰的等腰直角三角形?若存在,求出點(diǎn)坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列條件中,不能判斷四邊形ABCD是平行四邊形的為( )
A. AB∥CD,AD∥BC
B. AB=CD,AD=BC
C. AB∥CD,AD=BC
D. AB∥CD,AB=CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,和是兩個(gè)全等的三角形,,.現(xiàn)將和按如圖所示的方式疊放在一起,保持不動(dòng),運(yùn)動(dòng),且滿足:點(diǎn)E在邊BC上運(yùn)動(dòng)(不與點(diǎn)B,C重合),且邊DE始終經(jīng)過點(diǎn)A,EF與AC交于點(diǎn)M .
(1)求證:∠BAE=∠MEC;
(2)當(dāng)E在BC中點(diǎn)時(shí),請求出ME:MF的值;
(3)在的運(yùn)動(dòng)過程中,能否構(gòu)成等腰三角形?若能,請直接寫出所有符合條件的BE的長;若不能,則請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,AC是對(duì)角線,今有較大的直角三角板,一邊始終經(jīng)過點(diǎn)B,直角頂點(diǎn)P在射線AC上移動(dòng),另一邊交DC于點(diǎn)Q.
(1)如圖①,當(dāng)點(diǎn)Q在DC邊上時(shí),猜想并寫出PB與PQ所滿足的數(shù)量關(guān)系,并加以證明;
(2)如圖②,當(dāng)點(diǎn)Q落在DC的延長線上時(shí),猜想并寫出PB與PQ滿足的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABE=∠ACD=Rt∠,AE=AD,∠ABC=∠ACB.求證:∠BAE=∠CAD.
請補(bǔ)全證明過程,并在括號(hào)里寫上理由.
證明:在△ABC中,
∵∠ABC=∠ACB
∴AB= ( )
在Rt△ABE和Rt△ACD中,
∵ =AC, =AD
∴Rt△ABE≌Rt△ACD( )
∴∠BAE=∠CAD( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AB=6,點(diǎn)D是BC上一動(dòng)點(diǎn),連接AD,將△ACD沿AD折疊,點(diǎn)C落在點(diǎn)C1處,連接C1B,則BC1的最小值為( )
A.2
B.3
C.3
D.2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com