【題目】某同學(xué)做一道數(shù)學(xué)題,“已知兩個多項(xiàng)式AB,B2x2+3x4,試求A2B”.這位同學(xué)把“A2B”誤看成“A+2B”,結(jié)果求出的答案為5x2+8x10.請你替這位同學(xué)求出“A2B”的正確答案.

【答案】3x24x+6

【解析】

先根據(jù)條件求出多項(xiàng)式A,然后將AB代入A-2B中即可得出答案.先根據(jù)A+2B和多項(xiàng)式B求出多項(xiàng)式A,化簡得A=,再將A,B代入求解即可,即A-2B=.

解:∵B2x2+3x4,A+2B5x2+8x10

A5x2+8x1022x2+3x4

5x2+8x104x26x+8

x2+2x2,

A2B

x2+2x222x2+3x4

x2+2x24x26x+8

=﹣3x24x+6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)課外興趣活動小組準(zhǔn)備圍建一個矩形的苗圃圓.其中一邊靠墻,另外三邊用長為40m的籬笆圍成.已知墻長為18m(如圖所示),設(shè)這個苗圃園垂直于墻的一邊ABxm

1)用含有x的式子表示AD,并寫出x的取值范圍;

2)若苗圃園的面積為192m2平方米,求AB的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,二次函數(shù)的圖象如圖所示,點(diǎn),是該二次函數(shù)圖象上的兩點(diǎn),其中,則下列結(jié)論正確的是( )

A. B. C. 函數(shù)的最小值是D. 函數(shù)的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】字母mn分別表示一個有理數(shù),且m≠n.現(xiàn)規(guī)定min{mn}表示m、n中較小的數(shù),例如:min{3,﹣1}=﹣1,min{10}=﹣1.據(jù)此解決下列問題:

1min{,﹣}   

2)若min{,2)=﹣1,求x的值;

3)若min{2x5x+3}=﹣2,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】希臘數(shù)學(xué)家丟番圖(公元3-4世紀(jì))的墓碑上記載著:他生命的六分之一是幸福的童年;再活了他生命的十二分之一,兩頰長起了細(xì)細(xì)的胡須;他結(jié)了婚,又度過了一生的七分之一;再過五年,他有了兒子,感到很幸福;可是兒子只活了他父親全部年齡的一半;兒子死后,他在極度悲痛中度過了四年,也與世長辭了.”

根據(jù)以上信息,請你算出:

1)丟番圖的壽命;

2)丟番圖開始當(dāng)爸爸時的年齡;

3)兒子死時丟番圖的年齡.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=10,AC=16,點(diǎn)M是對角線AC上的一個動點(diǎn),過點(diǎn)M作PQ⊥AC交AB于點(diǎn)P,交AD于點(diǎn)Q,將△APQ沿PQ折疊,點(diǎn)A落在點(diǎn)E處,當(dāng)△BCE是等腰三角形時,AP的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)AB,C在一條直線上,△ABD△BCE均為等邊三角形,連接AECDAE分別交CD,BD于點(diǎn)M,P,CDBE于點(diǎn)Q,連接PQ,BM,下面結(jié)論:

①△ABE≌△DBC;②∠DMA=60°;③△BPQ為等邊三角形;④MB平分∠AMC,

其中結(jié)論正確的有( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于二次函數(shù)y=x2+mx+1,當(dāng)0x≤2時的函數(shù)值總是非負(fù)數(shù),則實(shí)數(shù)m的取值范圍為( 。

A. m≥﹣2 B. ﹣4≤m≤﹣2 C. m≥﹣4 D. m≤﹣4m≥﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線分別與軸,軸交于兩點(diǎn),與直線交于點(diǎn).

1)點(diǎn)的坐標(biāo)為__________,點(diǎn)的坐標(biāo)為__________

2)在線段上有一點(diǎn),過點(diǎn)軸的平行線交直線于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為,當(dāng)為何值時,四邊形是平行四邊形.

查看答案和解析>>

同步練習(xí)冊答案