【題目】如圖,扇形OMN與正方形ABCD,半徑OM與邊AB重合,弧MN的長(zhǎng)等于AB的長(zhǎng),已知AB=2,扇形OMN沿著正方形ABCD逆時(shí)針滾動(dòng)到點(diǎn)O首次與正方形的某頂點(diǎn)重合時(shí)停止,則點(diǎn)O經(jīng)過的路徑長(zhǎng)

【答案】2+4π
【解析】解:當(dāng)扇形繞B旋轉(zhuǎn)時(shí),路徑長(zhǎng)是 =2π,

當(dāng)弧NM在BC上時(shí),O經(jīng)過的路徑長(zhǎng)是2;

當(dāng)扇形繞C旋轉(zhuǎn)時(shí),路徑長(zhǎng)是 =2π;

則點(diǎn)O經(jīng)過的路徑長(zhǎng)2+2π+2π=2+4π.

故答案是:2+4π.

【考點(diǎn)精析】掌握弧長(zhǎng)計(jì)算公式是解答本題的根本,需要知道若設(shè)⊙O半徑為R,n°的圓心角所對(duì)的弧長(zhǎng)為l,則l=nπr/180;注意:在應(yīng)用弧長(zhǎng)公式進(jìn)行計(jì)算時(shí),要注意公式中n的意義.n表示1°圓心角的倍數(shù),它是不帶單位的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】()問題提出:如何把n個(gè)邊長(zhǎng)為1的正方形,剪拼成一個(gè)大正方形?

()解決方法

探究一:若n是完全平方數(shù),我們不用剪切小正方形,可直接將小正方形拼成一個(gè)大正方形,如圖(1),用四個(gè)邊長(zhǎng)為1的小正方形可以拼成一個(gè)大正方形.

問題1:請(qǐng)用9個(gè)邊長(zhǎng)為1的小正方形在圖(2)的位置拼成一個(gè)大正方形.

探究二:若n2,5,10,13等這些數(shù),都可以用兩個(gè)正整數(shù)的平方和來表示,以n5為例,用5個(gè)邊長(zhǎng)為1的小正方形剪拼成一個(gè)大正方形.

(1)計(jì)算:拼成的大正方形的面積為5,邊長(zhǎng)為,可表示成;

(2)剪切:如圖(3)5個(gè)小正方形按如圖所示分成5部分,虛線為剪切線;

(3)拼圖:以圖(3)中的虛線為邊,拼成一個(gè)邊長(zhǎng)為的大正方形,如圖(4)

問題2:請(qǐng)仿照上面的研究方式,用13個(gè)邊長(zhǎng)為1的小正方形剪拼成一個(gè)大正方形;

(1)計(jì)算:拼成的大正方形的面積為____,邊長(zhǎng)為_____,可表示成____;

(2)剪切:請(qǐng)仿照?qǐng)D(3)的方法,在圖(5)的位置畫出圖形.

(3)拼圖:請(qǐng)仿照?qǐng)D(4)的方法,在圖(6)的位置出拼成的圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB6,AD8,PAD上的動(dòng)點(diǎn),PEAC,PFBDF,求PE+PF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1=2,∠5=6,∠3=4,試說明AEBD,ADBC.請(qǐng)完成下列證明過程.

證明:

∵∠5=6

ABCE(  ),

∴∠3=__________

∵∠3=4

∴∠4=BDC(  ),

    BD(  )

∴∠2=    (  )

∵∠1=2,

∴∠1=______

ADBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,BC=5,以B為圓心BC為半徑畫弧交AD于點(diǎn)E,連接CE,作BF⊥CE,垂足為F,則tan∠FBC的值為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】市場(chǎng)上的紅茶由茶原液與純凈水按一定比例配制而成,其中購(gòu)買一噸茶原液的錢可以買15 噸純凈水。由于今年以來茶產(chǎn)地連續(xù)大旱,茶原液收購(gòu)價(jià)上漲50%.純凈水價(jià)也上漲了10%,導(dǎo)致配制的這種茶飲料成本上漲40%,問這種茶飲料中茶原液與純凈水的配制比例為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,給出下列四個(gè)條件:① ∠BAC=∠DCA;② ∠DAC=∠BCA③ ∠ABD=∠CDB;④ ∠ADB=∠CBD,其中能使 ADBC的條件是(

A.①②B.③④C.②④D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,ABCD是邊長(zhǎng)為60cm的正方形硬紙片,切去四個(gè)全等的等腰直角三角形(陰影部分所示),其中E,F(xiàn)在AB上;再沿虛線折起,點(diǎn)A,B,C,D恰好重合于點(diǎn)O處(如圖②所示),形成有一個(gè)底面為正方形GHMN的包裝盒,設(shè)AE=x (cm).

(1)求線段GF的長(zhǎng);(用含x的代數(shù)式表示)
(2)當(dāng)x為何值時(shí),矩形GHPF的面積S (cm2)最大?最大面積為多少?
(3)試問:此種包裝盒能否放下一個(gè)底面半徑為15cm,高為10cm的圓柱形工藝品,且使得圓柱形工藝品的一個(gè)底面恰好落在圖②中的正方形GHMN內(nèi)?若能,請(qǐng)求出滿足條件的x的值或范圍;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解全校學(xué)生對(duì)新聞,體育.動(dòng)畫、娛樂、戲曲五類電視節(jié)目的喜愛情況,機(jī)調(diào)查了100名學(xué)生,結(jié)果如扇形圖所示,依據(jù)圖中信息,回答下列問題: (1)在被調(diào)查的學(xué)生中,喜歡“動(dòng)畫”節(jié)目的學(xué)生有 _____(名); (2)在扇形統(tǒng)計(jì)圖中,喜歡“體育”節(jié)目的學(xué)生部分所對(duì)應(yīng)的扇形圓心角大小為 _____(度).

查看答案和解析>>

同步練習(xí)冊(cè)答案