如圖,在△ABC中,AB=AC,BD是∠ABC的平分線,若∠ADB=93°,則∠A=______度.
∵在△ABC中,AB=AC,BD是∠ABC的平分線
∴2∠DBC=∠C
∵∠ADB=∠DBC+∠C=3∠DBC=93°
∴∠DBC=31°
∴∠A=180°-93°-31°=56°.
故填56.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6.
(1)CO是△BCD的高嗎?為什么?
(2)求∠5、∠7的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知D、E是等腰△ABC底邊BC上兩點,且BD=CE.求證:∠ADE=∠AED.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在△ABC中,AB=AC=13,M、N分別為AB、AC的中點,D、E在BC上,且DE=5,BC=10,連接DN、EM,
則圖中陰影部分的面積為(  )
A.25B.30C.35D.40

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,AB=AC=2,∠B=∠C=40°,點D在線段BC上運動(D不與B、C重合),連接AD,作∠ADE=40°,DE交線段AC于E.
(1)當∠BDA=115°時,∠EDC=______°,∠DEC=______°;點D從B向C運動時,∠BDA逐漸變______(填“大”或“小”);
(2)當DC等于多少時,△ABD≌△DCE,請說明理由;
(3)在點D的運動過程中,△ADE的形狀可以是等腰三角形嗎?若可以,請直接寫出∠BDA的度數(shù).若不可以,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,等腰三角形ABC的頂角為120°,腰長為10,則底邊上的高AD=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,點P是等腰△ABC的底邊BC上的點,以AP為腰在AP的兩側(cè)分別作等腰△AFP和等腰△AEP,且∠APF=∠APE=∠B,PF交AB于點M,PE交AC于點N,連接MN.
求證:MNBC.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,點B、C、E在一條直線上,△ABC、△DCE均為等邊三角形,
求證:(1)BD=AE;
(2)△CFG為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,△ABC為等邊三角形,面積為S.D1、E1、F1分別是△ABC三邊上的點,且AD1=BE1=CF1=
1
2
AB,連接D1E1、E1F1、F1D1,可得△D1E1F1是等邊三角形,此時△AD1F1的面積S1=
1
4
S,△D1E1F1的面積S1=
1
4
S.
(1)當D2、E2、F2分別是等邊△ABC三邊上的點,且AD2=BE2=CF2=
1
3
AB時如圖2,
①求證:△D2E2F2是等邊三角形;
②若用S表示△AD2F2的面積S2,則S2=______;若用S表示△D2E2F2的面積S2′,則S2′=______.
(2)按照上述思路探索下去,并填空:
當Dn、En、Fn分別是等邊△ABC三邊上的點,ADn=BEn=CFn=
1
n+1
AB時,(n為正整數(shù))△DnEnFn是______三角形;
若用S表示△ADnFn的面積Sn,則Sn=______;若用S表示△DnEnFn的面積Sn′,則S′n=______.

查看答案和解析>>

同步練習冊答案