【題目】如圖, 的圖像交x軸于O點和A點,將此拋物線繞原點旋轉180°得圖像y2 , y2與x軸交于O點和B點.
(1)若y1=2x2-3x,則y2= .
(2)設 y 1 的頂點為C,則當△ABC為直角三角形時,請你任寫一個符合此條件的 y 1 的表達式 .

【答案】
(1)y1=-2x2-3x
(2)y1=(x-1)2-
【解析】(1)解:y1=2x2-3x的圖像交x軸于O點和A點,
∴O(0,0),A(,0),
又∵將y1繞原點旋轉180°得圖像y2,
∴B(-,0),
∴y2解析式為:y1=-2x2-3x.
(2)依據(jù)題意得:y1=(x-1)2-
【考點精析】掌握勾股定理的概念是解答本題的根本,需要知道直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ADBC,∠EAD=∠C

1)試判斷AECD的位置關系,并說明理由;

2)若∠FEC=∠BAE,∠EFC50°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A(3,0),B(0,-1),連接AB,B點作AB的垂線段,使BA=BC,連接AC.

(1)如圖1,求C點坐標;

(2)如圖2,P點從A點出發(fā),沿x軸向左平移,連接BP,作等腰直角三角形BPQ,連接CQ.求證:PA=CQ.

(3)(2)的條件下,C、P、Q三點共線,求此時P點坐標及∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學學生步行到郊外旅行,七年級班學生組成前隊,步行速度為4千米小時,七班的學生組成后隊,速度為6千米小時;前隊出發(fā)1小時后,后隊才出發(fā),同時后隊派一名聯(lián)絡員騎自行車在兩隊之間不間斷地來回聯(lián)絡,他騎車的速度為10千米小時.

后隊追上前隊需要多長時間?

后隊追上前隊的時間內,聯(lián)絡員走的路程是多少?

七年級班出發(fā)多少小時后兩隊相距2千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,將矩形OABC置于平面直角坐標系中,點A,C分別在x,y軸的正半軸上,已知點B(4,2),將矩形OABC翻折,使得點C的對應點P恰好落在線段OA(包括端點O,A)上,折痕所在直線分別交BC、OA于點D、E;若點P在線段OA上運動時,過點P作OA的垂線交折痕所在直線于點 Q.設點Q的坐標為(x,y),則y關于x的函數(shù)關系式是 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小華和小峰是兩名自行車愛好者,小華的騎行速度比小峰快兩人準備在周長為250米的賽道上進行一場比賽若小華在小峰出發(fā)15秒之后再出發(fā),圖中、分別表示兩人騎行路程與時間的關系.

小峰的速度為______秒,他出發(fā)______米后,小華才出發(fā);

小華為了能和小峰同時到達終點,設計了兩個方案,方案一:加快騎行速度;方案二:比預定時間提前出發(fā).

______“A“”“B“代表方案一;

若采用方案二,小華必須在小峰出發(fā)多久后開始騎行?求出此時小華騎行的路程與時間的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A、D、C、F在同一條直線上,AB=DE,BC=EF,要使△ABC≌△DEF,還需要添加一個條件是( 。

A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF ; D. ∠A=∠EDF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點B在線段AC上(BC>AB),在線段AC同側作正方形ABMN及正方形BCEF,連接AM、MEEA得到△AME.當AB=1時,△AME的面積記為S1;當AB=2時,△AME的面積記為S2;當AB=3時,△AME的面積記為S3;則S2020S2019=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(列二元一次方程組解應用題)某公司共有3個一樣規(guī)模的大餐廳和2個一樣規(guī)模的小餐廳,經過測試同時開放2個大餐廳和1個小餐廳,可供300名員工就餐;同時開放1個大餐廳,1個小餐廳,可供170名員工就餐.

(1)請問1個大餐廳、1個小餐廳分別可供多少名員工就餐;

(2)如果3個大餐廳和2個小餐廳全部開放,那么能否供全體450名員工就餐?請說明理由.

查看答案和解析>>

同步練習冊答案