分析 先根據(jù)題意畫出圖形,連接OA、OB,過O作OF⊥AB,由垂徑可求出AF的長,根據(jù)特殊角的三角函數(shù)值可求出∠AOF的度數(shù),由圓周角定理及圓內(nèi)接四邊形的性質(zhì)即可求出答案.
解答 解:如圖所示,
連接OA、OB,過O作OF⊥AB,則AF=$\frac{1}{2}$AB,∠AOF=$\frac{1}{2}$∠AOB,
∵OA=$\frac{1}{2}×6$=3,AB=3,
∴AF=$\frac{1}{2}$AB=$\frac{1}{2}$×3=$\frac{3}{2}$,
∴sin∠AOF=$\frac{AF}{OA}$=$\frac{1}{2}$,
∴∠AOF=30°,
∴∠AOB=2∠AOF=60°,
∴∠ADB=$\frac{1}{2}$∠AOB=$\frac{1}{2}$×60°=30°,
∴∠AEB=180°-30°=150°.
綜上所述:弦AB所對的圓周角度數(shù)為30°或150°.
故答案為:30°或150°.
點評 本題考查的是圓周角定理及垂徑定理,解答此題時要注意一條弦所對的圓周角有兩個,這兩個角互為補角.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | y1>y2 | B. | y1<y2 | C. | y1=y2 | D. | 以上皆可能 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com