【題目】已知:如圖,矩形ABCD的對角線ACBD相交于點O,點O關于直線AD的對稱點是E,連接AE、DE

1)試判斷四邊形AODE的形狀,不必說明理由;

2)請你連接EB、EC,并證明EBEC

【答案】(1) 四邊形AODE是菱形.理由見解析;(2)見解析.

【解析】

1)利用對稱的性質,又因為四邊形ABCD是矩形,兩個結論聯(lián)合起來,可知四邊形AODE是菱形;

2)先證出∠EAB=EDC,再證明EAB≌△EDC,從而得出EB=EC

1)四邊形AODE是菱形.理由如下:

∵點O和點E關于直線AD對稱,

∴△AOD≌△AED;

OAAE ODDE;

∵由矩形ABCD

OAOD;

OAODDEEA;

∴四邊形AODE是菱形.

2)連接EBEC,如圖,

∵四邊形AODE是菱形,

AEED;

∴∠EAD=∠EDA

∵四邊形ABCD是矩形,

ABCD,∠BAD=∠CDA90°;

∴∠EAD+BAD=∠EDA+CDA

∴∠EAB=∠EDC;

∴△EAB≌△EDC;

EBEC

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知⊙O的半徑為4,AB,AC是⊙O的兩條條弦,AB,點OAC的距離為,試求出∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點C、D在⊙O上,點E在⊙O外,∠EAC=∠D

1)求證:AE是⊙O的切線;

2)若BC2,∠D60°時,求劣弧AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校計劃開設四門選修課:樂器、舞蹈、繪畫、書法.為提前了解學生的選修情況,學校采取隨機抽樣的方法進行問卷調(diào)查(每個被調(diào)查的學生必須選擇而且只能選擇其中一門).對調(diào)查結果進行了整理,繪制成如下兩幅不完整的統(tǒng)計圖,請結合圖中所給信息解答下列問題:

(1)本次調(diào)查的學生共有 人,在扇形統(tǒng)計圖中,m的值是 ;

(2)將條形統(tǒng)計圖補充完整;

(3)在被調(diào)查的學生中,選修書法的有2名女同學,其余為男同學,現(xiàn)要從中隨機抽取2名同學代表學校參加某社區(qū)組織的書法活動,請直接寫出所抽取的2名同學恰好是1名男同學和1名女同學的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖1所示,在中,,,點在斜邊上,點在直角邊上,若,求證:.

(2)如圖2所示,在矩形中,,,點上,連接,過點(的延長線)于點.

①若,求的長;

②若點恰好與點重合,請在備用圖上畫出圖形,并求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】O的直徑為10cm,弦AB平行弦CD,這兩弦長分別為6cm8cm,它們之間的距離為________cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點A(﹣3,0),對稱軸為x=﹣1.給出四個結論:①b2>4ac;2a+b=0;3a+c=0;a+b+c=0.其中正確結論的個數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線yax2+bx+1的頂點為D,與x軸正半軸交于AB兩點,AB左,與y軸正半軸交于點C,當△ABD和△OBC均為等腰直角三角形(O為坐標原點)時,b的值為( 。

A. 2 B. 2或﹣4 C. 2 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:MON=30°,點A1、A2、A3在射線ON上,點B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若OA1=1,則△A6B6A7的邊長為_____

查看答案和解析>>

同步練習冊答案