【題目】如圖1,正方形ABCD的邊長(zhǎng)為2,點(diǎn)M是BC的中點(diǎn),P是線段MC上的一個(gè)動(dòng)點(diǎn)(不與M、C重合),以AB為直徑作⊙O,過(guò)點(diǎn)P作⊙O的切線,交AD于點(diǎn)F,切點(diǎn)為E.

(1)求證:OF∥BE;
(2)設(shè)BP=x,AF=y,求y關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍;
(3)延長(zhǎng)DC、FP交于點(diǎn)G,連接OE并延長(zhǎng)交直線DC于H(圖2),問是否存在點(diǎn)P,使△EFO∽△EHG(E、F、O與E、H、G為對(duì)應(yīng)點(diǎn))?如果存在,試求(2)中x和y的值;如果不存在,請(qǐng)說(shuō)明理由.

【答案】
(1)證明:連接OE

FE、FA是⊙O的兩條切線

∴∠FAO=∠FEO=90°

在Rt△OAF和Rt△OEF中,

∴Rt△FAO≌Rt△FEO(HL),

∴∠AOF=∠EOF= ∠AOE,

∴∠AOF=∠ABE,

∴OF∥BE,


(2)解:過(guò)F作FQ⊥BC于Q

∴PQ=BP﹣BQ=x﹣y

PF=EF+EP=FA+BP=x+y

∵在Rt△PFQ中

∴FQ2+QP2=PF2

∴22+(x﹣y)2=(x+y)2

化簡(jiǎn)得: ,(1<x<2)


(3)解:存在這樣的P點(diǎn),

理由:∵∠EOF=∠AOF,

∴∠EHG=∠EOA=2∠EOF,

當(dāng)∠EFO=∠EHG=2∠EOF時(shí),

即∠EOF=30°時(shí),Rt△EFO∽R(shí)t△EHG,

此時(shí)Rt△AFO中,

y=AF=OAtan30°= ,

∴當(dāng) 時(shí),△EFO∽△EHG


【解析】(1)根據(jù)正方形和切線的性質(zhì)得到Rt△FAO≌Rt△FEO,得到∠AOF=∠ABE,根據(jù)平行線的判定方法得到OF∥BE;(2)根據(jù)切線性質(zhì)得到PF=EF+EP=FA+BP,根據(jù)勾股定理求出BP,AF的關(guān)系;(3)根據(jù)正方形的性質(zhì)和相似三角形的判定得到Rt△EFO∽R(shí)t△EHG,根據(jù)直角三角形中特殊角的函數(shù)值求出x、y的值,得到△EFO∽△EHG.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為給人們的生活帶來(lái)方便,2017年興化市準(zhǔn)備在部分城區(qū)實(shí)施公共自行車免費(fèi)服務(wù).圖1是公共自行車的實(shí)物圖,圖2是公共自行車的車架示意圖,點(diǎn)A,D,C,E在同一條直線上,CD=35cm,DF=24cm,AF=30cm,F(xiàn)D⊥AE于點(diǎn)D,座桿CE=15cm,且∠EAB=75°.

(1)求AD的長(zhǎng);
(2)求點(diǎn)E到AB的距離(結(jié)果保留整數(shù)).
(參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC的面積為.第一次操作:分別延長(zhǎng),,至點(diǎn),,,使,,順次連接,,得到△.第二次操作:分別延長(zhǎng),,至點(diǎn),,使,,順次連接,,得到△,…按此規(guī)律,要使得到的三角形的面積超過(guò)2020,最少經(jīng)過(guò)多少次操作( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】乘法公式的探究及應(yīng)用.

1)如圖1,可以求出陰影部分的面積是   (寫成兩數(shù)平方差的形式);

2)如圖2,若將陰影部分裁剪下來(lái),重新拼成一個(gè)矩形,它的寬是   ,長(zhǎng)是   ,面積是   (寫成多項(xiàng)式乘法的形式);

3)比較圖1、圖2陰影部分的面積,可以得到公式   ;

4)運(yùn)用你所得到的公式,計(jì)算下列各題:

① 20.2×19.8 ;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形,的頂點(diǎn)都在格點(diǎn)上,建立平面直角坐標(biāo)系,

1)點(diǎn)A的坐標(biāo)為______,點(diǎn)C的坐標(biāo)為______;

2)將先向右平移2個(gè)單位長(zhǎng)度,再向下平移3個(gè)單位長(zhǎng)度,請(qǐng)畫出平移后的,并分別寫出點(diǎn)A1、B1C1的坐標(biāo);

3)求的面積.

0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)B是x軸正半軸上的一動(dòng)點(diǎn),以AB為邊作等腰Rt△ABC,使∠BAC=90°,設(shè)點(diǎn)B的橫坐標(biāo)為x,設(shè)點(diǎn)C的縱坐標(biāo)為y,能表示y與x的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AG∥CDBC于點(diǎn)G,點(diǎn)E、F分別為AG、CD的中點(diǎn),連接DE、FG

1)求證:四邊形DEGF是平行四邊形;

2)當(dāng)點(diǎn)GBC的中點(diǎn)時(shí),求證:四邊形DEGF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,,,,若動(dòng)點(diǎn)P從點(diǎn)C開始,按的路徑運(yùn)動(dòng),且速度為每秒1cm,設(shè)出發(fā)的時(shí)間為t秒.

出發(fā)2秒后,求的面積;

當(dāng)t為幾秒時(shí),BP平分

t為何值時(shí),為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,AE平分∠BAD,交BC于點(diǎn)E,BF平分∠ABC,交AD于點(diǎn)F,AE與BF交于點(diǎn)P,連接EF,PD.

(1)求證:四邊形ABEF是菱形;
(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案