如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)y=
8
2
5
x2+bx+c經(jīng)過(guò)點(diǎn)A(
3
2
,0)和點(diǎn)B(1,2
2
),與x軸的另一個(gè)交點(diǎn)為C.
(1)求拋物線(xiàn)的函數(shù)表達(dá)式;
(2)點(diǎn)D在對(duì)稱(chēng)軸的右側(cè),x軸上方的拋物線(xiàn)上,且∠BDA=∠DAC,求點(diǎn)D的坐標(biāo);
(3)在(2)的條件下,連接BD,交拋物線(xiàn)對(duì)稱(chēng)軸于點(diǎn)E,連接AE.
①判斷四邊形OAEB的形狀,并說(shuō)明理由;
②點(diǎn)F是OB的中點(diǎn),點(diǎn)M是直線(xiàn)BD的一個(gè)動(dòng)點(diǎn),且點(diǎn)M與點(diǎn)B不重合,當(dāng)∠BMF=
1
3
∠MFO時(shí),請(qǐng)直接寫(xiě)出線(xiàn)段BM的長(zhǎng).
(1)將A(
3
2
,0)、B(1,2
2
)代入拋物線(xiàn)解析式y(tǒng)=
8
2
5
x2+bx+c,得:
8
2
5
×
9
4
+
3
2
b+c=0
8
2
5
+b+c=2
2
,
解得:
b=-8
2
c=
42
2
5

∴y=
8
2
5
x2-8
2
x+
42
2
5


(2)當(dāng)∠BDA=∠DAC時(shí),BDx軸.
∵B(1,2
2
),
當(dāng)y=2
2
時(shí),2
2
=
8
2
5
x2-8
2
x+
42
2
5
,
解得:x=1或x=4,
∴D(4,2
2
).

(3)①四邊形OAEB是平行四邊形.
理由如下:拋物線(xiàn)的對(duì)稱(chēng)軸是x=
5
2

∴BE=
5
2
-1=
3
2

∵A(
3
2
,0),
∴OA=BE=
3
2

又∵BEOA,
∴四邊形OAEB是平行四邊形.
②∵O(0,0),B(1,2
2
),F(xiàn)為OB的中點(diǎn),∴F(
1
2
,
2
).
過(guò)點(diǎn)F作FN⊥直線(xiàn)BD于點(diǎn)N,則FN=2
2
-
2
=
2
,BN=1-
1
2
=
1
2

在Rt△BNF中,由勾股定理得:BF=
BN2+FN2
=
3
2

∵∠BMF=
1
3
∠MFO,∠MFO=∠FBM+∠BMF,
∴∠FBM=2∠BMF.
(I)當(dāng)點(diǎn)M位于點(diǎn)B右側(cè)時(shí).
在直線(xiàn)BD上點(diǎn)B左側(cè)取一點(diǎn)G,使BG=BF=
3
2
,連接FG,則GN=BG-BN=1,
在Rt△FNG中,由勾股定理得:FG=
GN2+FN2
=
3

∵BG=BF,∴∠BGF=∠BFG.
又∵∠FBM=∠BGF+∠BFG=2∠BMF,
∴∠BFG=∠BMF,又∵∠MGF=∠MGF,
∴△GFB△GMF,
GM
GF
=
GF
GB
,即
3
2
+BM
3
=
3
3
2
,
∴BM=
1
2

(II)當(dāng)點(diǎn)M位于點(diǎn)B左側(cè)時(shí).
設(shè)BD與y軸交于點(diǎn)K,連接FK,則FK為Rt△KOB斜邊上的中線(xiàn),
∴KF=
1
2
OB=FB=
3
2

∴∠FKB=∠FBM=2∠BMF,
又∵∠FKB=∠BMF+∠MFK,
∴∠BMF=∠MFK,
∴MK=KF=
3
2

∴BM=MK+BK=
3
2
+1=
5
2

綜上所述,線(xiàn)段BM的長(zhǎng)為
1
2
5
2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線(xiàn)y=(x-2)2的頂點(diǎn)為C,直線(xiàn)y=2x+4與拋物線(xiàn)交于A、B兩點(diǎn),試求S△ABC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線(xiàn)y=mx2-(m-5)x-5(m>0)與x軸交于兩點(diǎn)A(x1,0)、B(x2,0)(x1<x2),與y軸交于點(diǎn)C,且AB=6.
(1)求拋物線(xiàn)和直線(xiàn)BC的解析式;
(2)在給定的直角坐標(biāo)系中,畫(huà)出拋物線(xiàn)和直線(xiàn)BC;
(3)若⊙P過(guò)A、B、C三點(diǎn),求⊙P的半徑;
(4)拋物線(xiàn)上是否存在點(diǎn)M,過(guò)點(diǎn)M作MN⊥x軸于點(diǎn)N,使△MBN被直線(xiàn)BC分成面積比為1:3的兩部分?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(t007•呼倫貝爾)某車(chē)間有t0名工人,每人每天可加工甲種零件5個(gè)或乙種零件4個(gè),每加工一個(gè)甲種零件可獲利16元,每加工一個(gè)乙種零件可獲利t4元.現(xiàn)要求加工甲種零件的人數(shù)不少于加工乙種零件人數(shù)的t倍,設(shè)每天所獲利潤(rùn)為y元,那么多少人加工甲種零件時(shí),每天所獲利潤(rùn)最大,每天所獲最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知在平面直角坐標(biāo)系xOy中,拋物線(xiàn)y=ax2+2x經(jīng)過(guò)點(diǎn)A(4,0),頂點(diǎn)為B.
(1)求頂點(diǎn)B的坐標(biāo);
(2)將這條拋物線(xiàn)向左平移后與y軸相交于點(diǎn)C,此時(shí)點(diǎn)A移動(dòng)到點(diǎn)D的位置,且∠DBA=∠CBO,求平移后拋物線(xiàn)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某商店經(jīng)銷(xiāo)一種銷(xiāo)售成本為每千克40元的水產(chǎn)品,據(jù)市場(chǎng)分析,若按每千克50元銷(xiāo)售一個(gè)月能售出500千克;銷(xiāo)售單價(jià)每漲1元,月銷(xiāo)售量就減少10千克,商店想在月銷(xiāo)售成本不超過(guò)1萬(wàn)元的情況下,使得月銷(xiāo)售利潤(rùn)達(dá)到8000元,銷(xiāo)售單價(jià)應(yīng)定為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,⊙M的圓心在x軸上,與坐標(biāo)軸交于A(0,
3
)、B(-1,0),拋物線(xiàn)y=-
3
3
x2+bx+c
經(jīng)過(guò)A、B兩點(diǎn).
(1)求拋物線(xiàn)的函數(shù)解析式;
(2)設(shè)拋物線(xiàn)的頂點(diǎn)為P.試判斷點(diǎn)P與⊙M的位置關(guān)系,并說(shuō)明理由;
(3)若⊙M與y軸的另一交點(diǎn)為D,則由線(xiàn)段PA、線(xiàn)段PD及弧ABD圍成的封閉圖形PABD的面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

我市某鎮(zhèn)的一種特產(chǎn)由于運(yùn)輸原因,長(zhǎng)期只能在當(dāng)?shù)劁N(xiāo)售.當(dāng)?shù)卣畬?duì)該特產(chǎn)的銷(xiāo)售投資收益為:每投入x萬(wàn)元,可獲得利潤(rùn)P=-
1
100
(x-60)2+41
(萬(wàn)元).當(dāng)?shù)卣當(dāng)M在“十二•五”規(guī)劃中加快開(kāi)發(fā)該特產(chǎn)的銷(xiāo)售,其規(guī)劃方案為:在規(guī)劃前后對(duì)該項(xiàng)目每年最多可投入100萬(wàn)元的銷(xiāo)售投資,在實(shí)施規(guī)劃5年的前兩年中,每年都從100萬(wàn)元中撥出50萬(wàn)元用于修建一條公路,兩年修成,通車(chē)前該特產(chǎn)只能在當(dāng)?shù)劁N(xiāo)售;公路通車(chē)后的3年中,該特產(chǎn)既在本地銷(xiāo)售,也在外地銷(xiāo)售.在外地銷(xiāo)售的投資收益為:每投入x萬(wàn)元,可獲利潤(rùn)Q=-
99
100
(100-x)2+
294
5
(100-x)+160
(萬(wàn)元).
(1)若不進(jìn)行開(kāi)發(fā),求5年所獲利潤(rùn)的最大值是多少?
(2)若按規(guī)劃實(shí)施,求5年所獲利潤(rùn)(扣除修路后)的最大值是多少?
(3)根據(jù)(1)、(2),該方案是否具有實(shí)施價(jià)值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)y=-x2+2x+c的部分圖象如圖所示,
(1)寫(xiě)出拋物線(xiàn)與x軸的另外一個(gè)交點(diǎn)坐標(biāo)并求c值;
(2)觀察圖象直接寫(xiě)出不等式-x2+2x+c>0的解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案