【題目】認真閱讀下面的材料,完成有關問題:

材料 在學習絕對值時,老師教過我們絕對值的幾何含義,如|53|表示5,3在數(shù)軸上對應的兩點之間的距離;|53||5(3)|,所以|53|表示5,-3在數(shù)軸上對應的兩點之間的距離;|5||50|,所以|5|表示5在數(shù)軸上對應的點到原點的距離.一般地,點AB在數(shù)軸上分別表示有理數(shù)a,b,那么AB之間的距離可表示為|ab|.

(1)A,B,C在數(shù)軸上分別表示有理數(shù)-5,-1, 3,那么AB的距離是 ,AC的距離是_____.(直接填最后結果)

(2)A,B,C在數(shù)軸上分別表示有理數(shù)x,-2,1,那么AB的距離與AC的距離之和可表示為 (用含絕對值的式子表示)

(3)利用數(shù)軸探究:

|x3||x1|p,當x的值取在不小于-1 且不大于3的范圍時,p的值是不變的,而且是p的最小值,這個最小值是_____

|x||x2|的最小值以及此時x的取值范圍?

【答案】(1)4,8; (2)|x+2|+|x-1||x-(-2)|+|x-1|;(3)①4;②當x的取值在不小于0且不大于2的范圍時,|x|+|x-2|的最小值是2.

【解析】

1)根據(jù)兩點間距離公式代入相應的值即可得出答案;

2)根據(jù)兩點間距離公式分別求出AB的距離和AC的距離,兩式相加即可得出答案;

3)①根據(jù)x的值取在不小于-1 且不大于3的范圍將絕對值化簡再進行計算即可得出答案;②根據(jù)①中的探究可知,當x的取值在不小于0且不大于2的范圍時,|x|+|x-2|有最小值,再根據(jù)x的取值范圍化簡絕對值,即可得出最小值.

解:(1AB的距離是:;

AC的距離是:

2AB的距離是:;

AC的距離是:

AB的距離與AC的距離之和可表示為:;

3)①∵x的值取在不小于-1 且不大于3的范圍

|x3||x1|p

p=4,這個最小值是4

②∵當x的值取在不小于-1 且不大于3的范圍時,|x3||x1|有最小值,最小值為4

∴當x的取值在不小于0且不大于2的范圍時,|x||x2|有最小值,最小值為2.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一兒童服裝商店在銷售中發(fā)現(xiàn):某品牌童裝平均每天可售出20件,每件盈利40元.為了迎接“六·一”兒童節(jié),商店決定采取適當?shù)慕祪r措施,擴大銷售量,增加盈利,盡快減少庫存.經(jīng)市場調查發(fā)現(xiàn):如果每件童裝降價1元,那么平均每天就可多售出2件.要想平均每天銷售這種童裝上盈利1200元,那么每件童裝應降價多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖的圖例①是一個方陣圖,每行的3個數(shù)、每列的3個數(shù)、斜對角的3個數(shù)相加的和均相等.如果將方陣圖的每個數(shù)都加上同一個數(shù),那么方陣中每行的3個數(shù)、每列的3個數(shù)、斜對角的3個數(shù)相加的和仍然相等,這樣就形成新的方陣圖.

根據(jù)圖①②③中給出的數(shù),對照原來的方陣圖,請你完成圖②③的方陣圖?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(﹣3,﹣1)、B(﹣1,0)、C0,﹣3

1)點A關于坐標原點O對稱的點的坐標為   

2)將△ABC繞點C順時針旋轉90°,畫出旋轉后得到的△A1B1C,A1A的長為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在平行四邊形ABCD中,用直尺和圓規(guī)作∠BAD的平分線交BC于點E(尺規(guī)作圖的痕跡保留在圖中了),連接EF.

(1)求證:四邊形ABEF為菱形;

(2)AE,BF相交于點O,若BF=6,AB=5,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】周末,小華騎自行車從家出發(fā)到植物園玩,從家出發(fā) 1 小時后,因自行車損壞修理了一段時間后,按原速前往植物園,小華從家出發(fā) 1 小時 50 分后,爸爸從家出發(fā)騎摩托車沿相同路線前往植物園,如圖是他們家的路程 ykm)與小華離家的時間 xh)的函數(shù)圖象,已知爸爸騎摩托車的速度是小華騎車速度的 2 倍,若爸爸比小華早 10 分達到植物園,則小華家到植物園的路程是_____km

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在 13×7 的網(wǎng)格中,每個小正方形邊長都是 1,其頂點叫做格點,如圖 A、B、D、E 均為格點,ABD 為格點三角形.

1)請在給定的網(wǎng)格中畫 ABCD,要求 C 點在格點上;

2)在(1)中 ABCD 右側,以格點 E 為其中的一個頂點,畫格點EFG,并使 EF5,FG3EG

3)先將(2)中的線段 EF 向右平移 6 個單位、再向下平移 l 個單位到 MP 的位置,再以 MP 為對角線畫矩形 MNPQM、NP、Q 按逆時針方向排列),直接寫出矩形 MNPQ 的面積為 ______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在正方形ABCD中,點EAD上一點,FG⊥CE分別交AB、CDF、G,垂足為O.

(1)求證:CE=FG;

(2)如圖2,連接OB,若AD=3DE,∠OBC=2∠DCE。

的值;

AD=3,則OE的長為_________(直接寫出結果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】六(2)班同學準備春游,某品牌牛奶每盒200毫升,售價2元.

1)在甲商店購買,買5盒送一盒;在乙商場購買,九折優(yōu)惠.全班42人,要給每位同學準備一瓶這樣的牛奶,該去哪家商場購買比較合算?為什么?

2)商店提供裝牛奶的是一個長方體紙箱,下面是它的展開圖,請算出這個長方體紙箱的表面積.(黏貼處不算,單位:分米)

查看答案和解析>>

同步練習冊答案