【題目】“低碳出行,綠色出行”,自行車逐漸成為人們喜愛(ài)的交通工具,寧波某運(yùn)動(dòng)商城的自行車銷售量自2016年起逐年增加,據(jù)統(tǒng)計(jì)該商城2016年銷售自行車768輛,2018年銷售了1200輛.

1)若該商城近四年的自行車銷售量年平均增長(zhǎng)率相同,請(qǐng)你預(yù)估:該商城2019年大概能賣出多少輛自行車?

2)考慮到自行車需求的不斷增加,本月該商場(chǎng)準(zhǔn)備投入3萬(wàn)元再購(gòu)進(jìn)一批兩種規(guī)格的自行車,已知型車的進(jìn)價(jià)為500/輛,售價(jià)為700/輛,型車的進(jìn)價(jià)為1000/輛,售價(jià)為1300/輛.根據(jù)銷售經(jīng)驗(yàn),型車不少于型車的2倍,但不超過(guò)型車的3.2倍,假設(shè)所進(jìn)車輛全部售完,為使得利潤(rùn)最大,該商場(chǎng)該如何進(jìn)貨?

【答案】(1)預(yù)估該商城2019年大概能賣出1500輛自行車;(2)使利潤(rùn)最大,應(yīng)購(gòu)進(jìn)型車36輛,型車12

【解析】

(1)根據(jù)四年的現(xiàn)增長(zhǎng)率相同和2016年銷售的自行車數(shù)目,可列出方程式,解方程可得到答案;

(2) 假設(shè)進(jìn)型車輛,則進(jìn)型車輛數(shù)可用含的式子表示,根據(jù)題意得到的取值范圍,再列出利潤(rùn)的方程式,觀察式子的特點(diǎn),再的取值范圍內(nèi)找到最大值,即可得到答案.

解:(1)設(shè)該商城近四年的自行車銷售量年平均增長(zhǎng)率為

則由題意可得:,

解得(舍,因?yàn)殇N售量逐年增加增長(zhǎng)率不能為負(fù)數(shù)),

所以該商城近四年的自行車銷售量年平均增長(zhǎng)率為

2019年大概賣出(輛).

答:預(yù)估該商城2019年大概能賣出1500輛自行車.

2)假設(shè)進(jìn)型車輛,則進(jìn)型車輛,根據(jù)題意得:

,

解不等式得:,利潤(rùn):

因?yàn)?/span>的增大而增大,又為整數(shù),所以時(shí),最大,此時(shí):

,符合題意.

答:使利潤(rùn)最大,應(yīng)購(gòu)進(jìn)型車36輛,型車12輛.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是重慶輕軌10號(hào)線龍頭寺公園站入口扶梯建設(shè)示意圖.起初工程師計(jì)劃修建一段坡度為3:2的扶梯,扶梯總長(zhǎng)為米.但這樣坡度大陡,扶梯太長(zhǎng)容易引發(fā)安全事故.工程師修改方案:修建兩段扶梯,并減緩各扶梯的坡度,其中扶梯和平臺(tái)形成的135°,從點(diǎn)看點(diǎn)的仰角為36.5°,段扶梯長(zhǎng)米,則段扶梯長(zhǎng)度約為( )米(參考數(shù)據(jù):,

A.43B.45C.47D.49

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)組織學(xué)生參加交通安全知識(shí)網(wǎng)絡(luò)測(cè)試活動(dòng).小華對(duì)九年(8)班全體學(xué)生的測(cè)試成績(jī)進(jìn)行了統(tǒng)計(jì),并將成績(jī)分為四個(gè)等級(jí):優(yōu)秀、良好、一般、不合格,繪制成如下的統(tǒng)計(jì)圖(不完整),請(qǐng)你根據(jù)圖中所給的信息解答下列問(wèn)題:

1)九年(8)班有______名學(xué)生,并把折線統(tǒng)計(jì)圖補(bǔ)充完整;

2)已知該市共有名中學(xué)生參加了這次交通安全知識(shí)測(cè)試,請(qǐng)你根據(jù)該班成績(jī)估計(jì)該市在這次測(cè)試中成績(jī)?yōu)閮?yōu)秀的人數(shù);

3)小華查了該市教育網(wǎng)站發(fā)現(xiàn),全市參加本次測(cè)試的學(xué)生中,成績(jī)?yōu)閮?yōu)秀的有人,請(qǐng)你用所學(xué)統(tǒng)計(jì)知識(shí)簡(jiǎn)要說(shuō)明實(shí)際優(yōu)秀人數(shù)與估計(jì)人數(shù)出現(xiàn)較大偏差的原因.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠有甲種原料,乙種原料,現(xiàn)用兩種原料生產(chǎn)處兩種產(chǎn)品共件,已知生產(chǎn)每件產(chǎn)品需甲種原料,乙種原料,且每件產(chǎn)品可獲得元;生產(chǎn)每件產(chǎn)品甲種原料,乙種原料,且每件產(chǎn)品可獲利潤(rùn)元,設(shè)生產(chǎn)產(chǎn)品 件(產(chǎn)品件數(shù)為整數(shù)件),根據(jù)以上信息解答下列問(wèn)題:

(1)生產(chǎn)兩種產(chǎn)品的方案有哪幾種?

(2)設(shè)生產(chǎn)這件產(chǎn)品可獲利元,寫出關(guān)于的函數(shù)解析式,寫出(1)中利潤(rùn)最大的方案,并求出最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是正方形的對(duì)角線,,邊在其所在直線上向右平移,將通過(guò)平移得到的線段記為,連結(jié),,并過(guò)點(diǎn),垂足為,連接,在平移變換過(guò)程中,設(shè)的面積為,則的最大值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為2,點(diǎn)EBC的中點(diǎn),AEBD交于點(diǎn)P,FCD上一點(diǎn),連接AF分別交BD,DE于點(diǎn)M,N,且AFDE,連接PN,則以下結(jié)論中:①FCD的中點(diǎn);②3AM=2DE;③tanEAF;④;⑤△PMN∽△DPE,正確的結(jié)論個(gè)數(shù)是(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線Cy與直線lykx+b相交于點(diǎn)A,B,直線ly軸交于點(diǎn)P

1)當(dāng)k0時(shí),求的值;

2)點(diǎn)M是拋物線上的動(dòng)點(diǎn),過(guò)點(diǎn)MMG⊥直線l于點(diǎn)G,當(dāng)k0時(shí),求的值;

3)點(diǎn)M是拋物線上的動(dòng)點(diǎn),過(guò)點(diǎn)MMGy軸交直線l于點(diǎn)G,當(dāng)k2時(shí),求證:不論b為何實(shí)數(shù),的值為定值,并求定值;

4)若將(2)的拋物線改為“yax2”,其他條件不變,則的值還為定值嗎?若是,請(qǐng)求出定值;若不是,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)ymx2﹣(2m+1x+2m0),請(qǐng)判斷下列結(jié)論是否正確,并說(shuō)明理由.

1)當(dāng)m0時(shí),函數(shù)ymx2﹣(2m+1x+2x1時(shí),yx的增大而減。

2)當(dāng)m0時(shí),函數(shù)ymx2﹣(2m+1x+2圖象截x軸上的線段長(zhǎng)度小于2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,矩形的頂點(diǎn)的坐標(biāo)為,頂點(diǎn),分別在軸,軸上,點(diǎn)的坐標(biāo)為,過(guò)點(diǎn)的直線與矩形的邊交于點(diǎn),且點(diǎn)不與點(diǎn)重合.以為一邊作菱形,點(diǎn)在矩形的邊上,設(shè)直線的函數(shù)表達(dá)式為

1)當(dāng)時(shí),求直線的函數(shù)表達(dá)式;

2)當(dāng)點(diǎn)的坐標(biāo)為時(shí),求直線的函數(shù)表達(dá)式;

3)連接,設(shè)的面積為,的長(zhǎng)為,請(qǐng)直接寫出的函數(shù)表達(dá)式及自變量的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案