【題目】銳銳參加我市電視臺(tái)組織的“牡丹杯”智力競答節(jié)目,答對最后兩道單選題就順利通關(guān),第一道單選題有3個(gè)選項(xiàng),第二道單選題有4個(gè)選項(xiàng),這兩道題銳銳都不會(huì),不過銳銳還有兩個(gè)“求助”可以用(使用“求助”一次可以讓主持人去掉其中一題的一個(gè)錯(cuò)誤選項(xiàng)).
(1)如果銳銳兩次“求助”都在第一道題中使用,那么銳銳通關(guān)的概率是________;
(2)如果銳銳兩次“求助”都在第二道題中使用,那么銳銳通關(guān)的概率是________;
(3)如果銳銳每道題各用一次“求助”,請用樹狀圖或者列表來分析他順利通關(guān)的概率.
【答案】(1)(2)(3)
【解析】試題分析:(1)銳銳兩次“求助”都在第一道題中使用,第一道肯定能對,第二道對的概率為,即可得出結(jié)果;
(2)由題意得出第一道題對的概率為,第二道題對的概率為,即可得出結(jié)果;
(3)用樹狀圖得出共有6種等可能的結(jié)果,銳銳順利通關(guān)的只有1種情況,即可得出結(jié)果.
試題解析:(1)第一道肯定能對,第二道對的概率為,
所以銳銳通關(guān)的概率為;
(2)銳銳兩次“求助”都在第二道題中使用,則第一道題對的概率為,第二道題對的概率為,所以銳銳能通關(guān)的概率為×=;
(3)銳銳將每道題各用一次“求助”,分別用A,B表示剩下的第一道單選題的2個(gè)選項(xiàng),a,b,c表示剩下的第二道單選題的3個(gè)選項(xiàng),樹狀圖如圖所示:
共有6種等可能的結(jié)果,銳銳順利通關(guān)的只有1種情況,
∴銳銳順利通關(guān)的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是正方形的對角線,點(diǎn)是的中點(diǎn),點(diǎn)是上一點(diǎn),連接于點(diǎn)交于點(diǎn)連接.
求證:(1);
(2).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC沿射線BC方向平移3cm得到△DEF.若△ABC的周長為14cm,則四邊形ABFD的周長為( 。
A. 14cm B. 17cm C. 20cm D. 23cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校七年級(jí)1班體育委員統(tǒng)計(jì)了全班同學(xué)60秒跳繩的次數(shù),并繪制出如下頻數(shù)分布表和頻數(shù)分布直方圖:
次數(shù) | 80≤x<100 | 100≤x<120 | 120≤x<140 | 140≤x<160 | 160≤x<180 | 180≤x<200 |
頻數(shù) | a | 4 | 12 | 16 | 8 | 3 |
結(jié)合圖表完成下列問題:
(1)a= ;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)寫出全班人數(shù)是 ,并求出第三組“120≤x<140”的頻率(精確到0.01)
(4)若跳繩次數(shù)不少于140的學(xué)生成績?yōu)閮?yōu)秀,則優(yōu)秀學(xué)生人數(shù)占全班總?cè)藬?shù)的百分之幾?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,D是AB上的一點(diǎn),AE⊥CD于點(diǎn)E,BF⊥CD于點(diǎn)F,若CE=BF,試判斷AC與BC的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,O為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)A坐標(biāo)為(4,0),同時(shí)將點(diǎn)A,O分別向上平移2個(gè)單位,再向左平移1個(gè)單位,得到對應(yīng)點(diǎn)B,C.
(1)求四邊形OABC的面積;
(2)在y軸上是否存在一點(diǎn)M,使△MOA的面積與四邊形OABC的面積相等?若存在這樣一點(diǎn),求出點(diǎn)M的坐標(biāo),若不存在,請說明理由;
(3)如圖2,點(diǎn)P在OA邊上,且∠CBP=∠CPB,Q是AO延長線上一動(dòng)點(diǎn),∠PCQ的平分線CD交BP的延長線于點(diǎn)D,在點(diǎn)Q運(yùn)動(dòng)的過程中,求∠D和∠CQP的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地為提倡節(jié)約用水,準(zhǔn)備實(shí)行自來水“階梯計(jì)費(fèi)”方式,用戶用水不超出基本用水量的部分享受基本價(jià)格,超出基本用水量的部分實(shí)行加價(jià)收費(fèi),為更好地決策,自來水公司隨機(jī)抽取部分用戶的用適量數(shù)據(jù),并繪制了如下不完整統(tǒng)計(jì)圖(每組數(shù)據(jù)包括右端點(diǎn)但不包括左端點(diǎn)),請你根據(jù)統(tǒng)計(jì)圖解決下列問題:
(1)此次調(diào)查抽取了多少用戶的用水量數(shù)據(jù)?
(2)補(bǔ)全頻數(shù)分布直方圖,求扇形統(tǒng)計(jì)圖中“25噸~30噸”部分的圓心角度數(shù);
(3)如果自來水公司將基本用水量定為每戶25噸,那么該地20萬用戶中約有多少用戶的用水全部享受基本價(jià)格?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a<0)的對稱軸為x=1,交x軸的一個(gè)交點(diǎn)為(x1,0),且﹣1<x1<0,有下列5個(gè)結(jié)論:①abc>0;②9a﹣3b+c<0;③2c<3b;④(a+c)2<b2;⑤a+b>m(am+b)(m≠1的實(shí)數(shù))其中正確的結(jié)論有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,∠E=∠F=90°,∠B=∠C,AE=AF.有以下結(jié)論:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正確的有( ).
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com