【題目】 [問(wèn)題解決]:如圖1,已知AB∥CD,E是直線AB,CD內(nèi)部一點(diǎn),連接BE,DE,若∠ABE=40°,∠CDE=60°,求∠BED的度數(shù).
嘉琪想到了如圖2所示的方法,但是沒(méi)有解答完,下面是嘉淇未完成的解答過(guò)程:
解:過(guò)點(diǎn)E作EF∥AB,
∴∠ABE=∠BEF=40°
∵AB∥CD,
∴EF∥CD,
…
請(qǐng)你補(bǔ)充完成嘉淇的解答過(guò)程:
[問(wèn)題遷移]:請(qǐng)你參考嘉琪的解題思路,完成下面的問(wèn)題:
如圖3,AB∥CD,射線OM與直線AB,CD分別交于點(diǎn)A,C,射線ON與直線AB,CD分別交于點(diǎn)B,D,點(diǎn)P在射線ON上運(yùn)動(dòng),設(shè)∠BAP=α,∠DCP=β.
(1)當(dāng)點(diǎn)P在B,D兩點(diǎn)之間運(yùn)動(dòng)時(shí)(P不與B,D重合),求α,β和∠APC之間滿足的數(shù)量關(guān)系.
(2)當(dāng)點(diǎn)P在B,D兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(P不與點(diǎn)O重合),直接寫出α,β和∠APC之間滿足的數(shù)量關(guān)系.
【答案】[問(wèn)題解決]見(jiàn)解析;[問(wèn)題遷移](1) ∠APC=α+β;(2) 當(dāng)點(diǎn)P在BN上時(shí),∠APC=β-α;當(dāng)點(diǎn)P在OD上時(shí),∠APC=α-β.
【解析】
問(wèn)題解決:過(guò)點(diǎn)E作EF∥AB,依據(jù)平行線的性質(zhì),即可得到∠BED的度數(shù);
問(wèn)題遷移:(1)過(guò)P作PQ∥AB,依據(jù)平行線的性質(zhì),即可得出α,β和∠APC之間滿足的數(shù)量關(guān)系.
(2)分兩種情況討論:過(guò)P作PQ∥AB,易得當(dāng)點(diǎn)P在BN上時(shí),∠APC=β-α;當(dāng)點(diǎn)P在OD上時(shí),∠APC=α-β.
問(wèn)題解決:
如圖2,過(guò)點(diǎn)E作EF∥AB,
∴∠ABE=∠BEF=40°
∵AB∥CD,
∴EF∥CD,
∴∠B=∠BEF,∠D=∠DEF,
∴∠BED=∠B+∠D=40°+60°=100°;
問(wèn)題遷移:
(1)如圖3,過(guò)P作PQ∥AB,
∵AB∥CD,
∴PQ∥CD,
∴∠BAP=∠APQ,∠DCP=∠CPQ,
∴∠APC=∠BAP+∠DCP,即∠APC=α+β;
(2)如圖4,當(dāng)點(diǎn)P在BN上時(shí),∠APC=β-α;
如圖5,當(dāng)點(diǎn)P在OD上時(shí),∠APC=α-β.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)E,且AC⊥BD,作BF⊥CD,垂足為點(diǎn)F,BF與AC交于點(diǎn)C,∠BGE=∠ADE.
(1)如圖1,求證:AD=CD;
(2)如圖2,BH是△ABE的中線,若AE=2DE,DE=EG,在不添加任何輔助線的情況下,請(qǐng)直接寫出圖2中四個(gè)三角形,使寫出的每個(gè)三角形的面積都等于△ADE面積的2倍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)1~5月份利潤(rùn)的變化情況圖所示,以下說(shuō)法與圖中反映的信息相符的是( )
A. 1~3月份利潤(rùn)的平均數(shù)是120萬(wàn)元
B. 1~5月份利潤(rùn)的眾數(shù)是130萬(wàn)元
C. 1~5月份利潤(rùn)的中位數(shù)為120萬(wàn)元
D. 1~2月份利潤(rùn)的增長(zhǎng)快于2~3月份利潤(rùn)的增長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 在多項(xiàng)式的乘法公式中,完全平方公式是其中重要的一個(gè).
(1)請(qǐng)你補(bǔ)全完全平方公式的推導(dǎo)過(guò)程:
(a+b)2=(a+b)(a+b)=a2+______+______+b2=a2+______+b2
(2)如圖,將邊長(zhǎng)為a+b的正方形分割成I,Ⅱ,Ⅲ,Ⅳ四部分,請(qǐng)用不同的方法分別表示出這個(gè)正方形的面積,并結(jié)合圖形給出完全平方公式的幾何解釋.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠BAD=∠CAE=90o,AB=AD,AE=AC, AF⊥CF,垂足為F.
(1)若AC=10,求四邊形ABCD的面積;
(2)求證:AC平分∠ECF;
(3)求證:CE=2AF .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,學(xué)校大門出口處有一自動(dòng)感應(yīng)欄桿,點(diǎn)A是欄桿轉(zhuǎn)動(dòng)的支點(diǎn),當(dāng)車輛經(jīng)過(guò)時(shí),欄桿AE會(huì)自動(dòng)升起,某天早上,欄桿發(fā)生故障,在某個(gè)位置突然卡住,這時(shí)測(cè)得欄桿升起的角度∠BAE=127°,已知AB⊥BC,支架AB高1.2米,大門打開(kāi)的寬度BC為2米,以下哪輛車可以通過(guò)?(欄桿寬度,汽車反光鏡忽略不計(jì))(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.車輛尺寸:長(zhǎng)×寬×高)( 。
A. 寶馬Z4(4200mm×1800mm×1360mm) B. 奔馳smart(4000mm×1600mm×1520mm)
C. 大眾朗逸(4600mm×1700mm×1400mm) D. 奧迪A6L(4700mm×1800mm×1400mm)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為調(diào)動(dòng)銷售人員的積極性,A、B兩公司采取如下工資支付方式:A公司每月2000元基本工資,另加銷售額的2%作為獎(jiǎng)金;B公司每月1600元基本工資,另加銷售額的4%作為獎(jiǎng)金。已知A、B公司兩位銷售員小李、小張1~6月份的銷售額如下表:
月份 銷售額 | 銷售額(單位:元) | |||||
1月 | 2月 | 3月 | 4月 | 5月 | 6月 | |
小李(A公司) | 11600 | 12800 | 14000 | 15200 | 16400 | 17600 |
小張(B公司 | 7400 | 9200 | 1100 | 12800 | 14600 | 16400 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的有_________(填序號(hào))
①倒數(shù)等于它本身的數(shù)只有;
②0既不是正數(shù),又不是負(fù)數(shù);
③正數(shù)和負(fù)數(shù)統(tǒng)稱有理數(shù);
④相反數(shù)等于它本身的數(shù)是不存在的;
⑤互為相反數(shù)的兩個(gè)數(shù)在數(shù)軸上對(duì)應(yīng)的兩個(gè)點(diǎn)到原點(diǎn)的距離相等;
⑥數(shù)軸上的點(diǎn)只能表示有理數(shù);
⑦若一個(gè)數(shù)是有理數(shù),則這個(gè)數(shù)不是分?jǐn)?shù)就是整數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C是線段AB的中點(diǎn),CD平分∠ACE,CE平分∠BCD,CD=CE.
(1)求證:△ACD≌△BCE;
(2)若∠D=75°,求∠B的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com