【題目】為豐富學(xué)生的校園文化生活,振興中學(xué)舉辦了一次學(xué)生才藝比賽,三個年級都有男、女各一名選手進入決賽,初一年級選手編號為男號、女號,初二年級選手編號為男號、女號,初三年級選手編號為男號、女號.比賽規(guī)則是男、女各一名選手組成搭檔展示才藝.

用列舉法說明所有可能出現(xiàn)搭檔的結(jié)果;

求同一年級男、女選手組成搭檔的概率;

求高年級男選手與低年級女選手組成搭檔的概率.

【答案】可能出現(xiàn)共種情況;

【解析】

(1)用列舉法列舉時,要不重不漏,按一定規(guī)律來列舉;
(2)根據(jù)用列舉法概率的求法,找準(zhǔn)兩點:①符合條件的情況數(shù)目,②全部情況的總數(shù);二者的比值就是其發(fā)生的概率;
(3)根據(jù)(1)中高年級男選手與低年級女選手組成搭檔的情況,求概率即可.

可能出現(xiàn)搭檔的結(jié)果有男號、女號,男號、女號,男號、女號,男號、女號,男號、女號,男號、女號,男號、女號,男號、女號,男號、女號,共種情況;

中同一年級男、女選手組成搭檔有種情況,故其概率為;

中高年級男選手與低年級女選手組成搭檔有種情況,故其概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】滿足下列條件的三角形中,不是直角三角形的是( )

A.A-B=CB.A:∠B:∠C=3 4 7

C.A=2B=3CD.A=9°,∠B=81°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的圖象的對稱軸是直線,其圖象的一部分如圖所示則:①;;;⑤當(dāng)時,.其中判斷正確的有(

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是二次函數(shù)的圖象的一部分,給出下列命題:①;的兩根分別為;.其中正確的命題是________.(只要求填寫正確命題的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下說法合理的是( )

A. 小明在10次拋圖釘?shù)脑囼炛邪l(fā)現(xiàn)3次釘尖朝上,由此他說釘尖朝上的概率是30%

B. 拋擲一枚普通的正六面體骰子,出現(xiàn)6的概率是的意思是每6次就有1次擲得6

C. 某彩票的中獎機會是2%,那么如果買100張彩票一定會有2張中獎。

D. 在一次課堂進行的試驗中,甲、乙兩組同學(xué)估計硬幣落地后,正面朝上的概率分別為048051

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:

如圖①,在四邊形ABCD中,ABAD,∠BAD120°,∠B=∠ADC90°.E、F分別是BCCD上的點.且∠EAF60°.探究圖中線段BE、EFFD之間的數(shù)量關(guān)系.

解法探究:小明同學(xué)通過思考,得到了如下的解決方法.

延長FD到點G,使DGBE,連結(jié)AG,先證明ABE≌△ADG,再證明AEF≌△AGF,從而可得結(jié)論.

1)請先寫出小明得出的結(jié)論,并在小明的解決方法的提示下,寫出所得結(jié)論的理由.

解:線段BE、EF、FD之間的數(shù)量關(guān)系是: .

理由:延長FD到點G,使DGBE,連結(jié)AG.(以下過程請同學(xué)們完整解答)

2)拓展延伸:

如圖②,在四邊形ABCD中,ABAD,若∠B+D180°,E、F分別是BC、CD上的點.且∠EAFBAD,則(1)中的結(jié)論是否仍然成立?若成立,請再把結(jié)論寫一寫;若不成立,請直接寫出你認(rèn)為成立的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在的正方形網(wǎng)格中,是格點三角形,點的坐標(biāo)分別為.

(1)在圖中畫出相應(yīng)的平面直角坐標(biāo)系;

(2)畫出關(guān)于直線對稱的,并標(biāo)出點的坐標(biāo);

(3)若點內(nèi),其關(guān)于直線的對稱點是,則的坐標(biāo)是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,、、是一組平行線,且每兩條相鄰平行線間的距離均為1,正方形的四個頂點分別落在這四條直線上,則正方形的面積為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等邊三角形,BDAC邊上的高,延長BCE,使CE=CD,連接DE。

1)求∠E的度數(shù)?

2)△DBE是什么三角形?為什么?

查看答案和解析>>

同步練習(xí)冊答案