【題目】如圖在正方形ABCD中,點(diǎn)M為BC邊上一點(diǎn),BM=4MC,以M為直角頂點(diǎn)作等腰直角三角形MEF,點(diǎn)E在對(duì)角線BD上,點(diǎn)F在正方形外EF交BC于點(diǎn)N,連CF,若BE=2,S△CMF=3,則MN=_____.
【答案】
【解析】分別過(guò)點(diǎn)E、F作EP⊥BC,F(xiàn)Q⊥BC,垂足分別為P、Q,
∴∠BPE=∠EPM=∠FQM=∠FQN=90°,∴EP//FQ,
∴∠PEM+∠EMP=90°,
∵∠EMP+∠QMF=∠EMF=90°,
∴∠PEM=∠QMF,
又∵M(jìn)E=MF,∴△PEM≌△QMF,∴PE=MQ,PM=FQ,
∵四邊形ABCD是正方形,∴∠DBC=45°,∵∠BPE =90°,∴∠BEP=45°=∠EBP,
∴BP=PE=BE=,
∴BM=+PM=+FQ,
∵BM=4CM,S△CMF==3,
∴FQ=3,
∴PQ=PM=MQ=3-=2,
∵EP//FQ,∴△EPN∽△FQN,∴EP:FQ=PN:NQ,
即::3=(2-NQ):NQ,
∴NQ=,
∴MN=NQ+MQ=+=,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC 的外接圓,AB=AC,BD是⊙O的直徑,PA∥BC,與DB的延長(zhǎng)線交于點(diǎn)P,連接AD.
(1)求證:PA是⊙O的切線;
(2)若AB=,BC=4,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=x+b分別交x軸、y軸于點(diǎn)A、C,點(diǎn)P是直線AC與雙曲線y=在第一象限內(nèi)的交點(diǎn),PB⊥x軸,垂足為點(diǎn)B,且OB=2,PB=4.
(1)求反比例函數(shù)的解析式;
(2)求△APB的面積;
(3)求在第一象限內(nèi),當(dāng)x取何值時(shí)一次函數(shù)的值小于反比例函數(shù)的值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩家綠化養(yǎng)護(hù)公司各自推出了校園綠化養(yǎng)護(hù)服務(wù)的收費(fèi)方案.
甲公司方案:每月的養(yǎng)護(hù)費(fèi)用y(元)與綠化面積x(平方米)的關(guān)系如圖所示.
乙公司方案:綠化面積不超過(guò)1000平方米時(shí),每月收取費(fèi)用5500元;綠化面積超過(guò)1000平方米時(shí),超過(guò)的部分每月每平方米加收4元.
(1)求如圖所示的y與x的函數(shù)表達(dá)式;
(2)如果某學(xué)校目前的綠化面積是1200平方米.那么選擇哪家公司的服務(wù)比較劃算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx﹣5與x軸交于A(﹣1,0),B(5,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖2,CE∥x軸與拋物線相交于點(diǎn)E,點(diǎn)H是直線CE下方拋物線上的動(dòng)點(diǎn),過(guò)點(diǎn)H且與y軸平行的直線與BC,CE分別相交于點(diǎn)F,G,試探究當(dāng)點(diǎn)H運(yùn)動(dòng)到何處時(shí),四邊形CHEF的面積最大,求點(diǎn)H的坐標(biāo);
(3)若點(diǎn)K為拋物線的頂點(diǎn),點(diǎn)M(4,m)是該拋物線上的一點(diǎn),在x軸,y軸上分別找點(diǎn)P,Q,使四邊形PQKM的周長(zhǎng)最小,求出點(diǎn)P,Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】江津區(qū)某玩具商城在“六一”兒童節(jié)來(lái)臨之際,以49元/個(gè)的價(jià)格購(gòu)進(jìn)某種玩具進(jìn)行銷售,并預(yù)計(jì)當(dāng)售價(jià)為50元/個(gè)時(shí),每天能售出50個(gè)玩具,且在一定范圍內(nèi),當(dāng)每個(gè)玩具的售價(jià)平均每提高0.5元時(shí),每天就會(huì)少售出3個(gè)玩具。
(1)若玩具售價(jià)不超過(guò)60元/個(gè),每天售出玩具總成本不高于686元,預(yù)計(jì)每個(gè)玩具售價(jià)的取值范圍;
(2)在實(shí)際銷售中,玩具城以(1)中每個(gè)玩具的最低售價(jià)及相應(yīng)的銷量為基礎(chǔ),進(jìn)一步調(diào)整了銷售方案,將每個(gè)玩具的售價(jià)提高了%,從而每天的銷售量降低了%,當(dāng)每天的銷售利潤(rùn)為147元時(shí),求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=+bx+c(a≠0)的部分圖象如圖所示,圖象過(guò)點(diǎn)(﹣1,0),對(duì)稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點(diǎn)A(﹣3,)、點(diǎn)B(,)、點(diǎn)C(,)在該函數(shù)圖象上,則<<;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為和,且<,則<﹣1<5<.其中正確的結(jié)論有( ).
A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知菱形ABCD,AB=AC,E、F分別是BC、AD的中點(diǎn),連接AE、CF.
求證:四邊形AECF是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC和△DEF是兩個(gè)全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的頂點(diǎn)E與△ABC的斜邊BC的中點(diǎn)重合.將△DEF繞點(diǎn)E旋轉(zhuǎn),旋轉(zhuǎn)過(guò)程中,線段DE與線段AB相交于點(diǎn)P,線段EF與射線CA相交于點(diǎn)Q.
(1)如圖①,當(dāng)點(diǎn)Q在線段AC上,且AP=AQ時(shí),求證:△BPE≌△CQE;
(2)如圖②,當(dāng)點(diǎn)Q在線段CA的延長(zhǎng)線上時(shí),求證:△BPE∽△CEQ;并求當(dāng)BP=a,CQ=a 時(shí),P、Q兩點(diǎn)間的距離 (用含a的代數(shù)式表示).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com