【題目】如圖,正方形ABCD的邊長是16,點(diǎn)E在邊AB上,AE=3,點(diǎn)F是邊BC上不與點(diǎn)B、C重合的一個動點(diǎn),把△EBF沿EF折疊,點(diǎn)B落在B′處,若△CDB′恰為等腰三角形,則DB′的長為 .
【答案】16或4.
【解析】
試題(1)當(dāng)B′D=B′C時,過B′點(diǎn)作GH∥AD,則∠B′GE=90°,當(dāng)B′C=B′D時,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性質(zhì),得B′E=BE=13,∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===;
(2)當(dāng)DB′=CD時,則DB′=16(易知點(diǎn)F在BC上且不與點(diǎn)C、B重合);
(3)當(dāng)CB′=CD時,∵EB=EB′,CB=CB′,∴點(diǎn)E、C在BB′的垂直平分線上,∴EC垂直平分BB′,由折疊可知點(diǎn)F與點(diǎn)C重合,不符合題意,舍去.
綜上所述,DB′的長為16或.故答案為:16或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上從左到右有A,B,C三個點(diǎn),點(diǎn)C對應(yīng)的數(shù)是10,AB=BC=20.
(1)點(diǎn)A對應(yīng)的數(shù)是 ,點(diǎn)B對應(yīng)的數(shù)是 .
(2)動點(diǎn)P從A出發(fā),以每秒4個單位長度的速度向終點(diǎn)C移動,同時,動點(diǎn)Q從點(diǎn)B出發(fā),以每秒1個單位長度的速度向終點(diǎn)C移動,設(shè)移動時間為t秒.
①用含t的代數(shù)式表示點(diǎn)P對應(yīng)的數(shù)是 ,點(diǎn)Q對應(yīng)的數(shù)是 ;
②當(dāng)點(diǎn)P和點(diǎn)Q間的距離為8個單位長度時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】心理學(xué)家研究發(fā)現(xiàn),一般情況下,一節(jié)課分鐘中,學(xué)生的注意力隨教師講課的變化而變化.開始上課時,學(xué)生的注意力逐步增強(qiáng),中間有一段時間學(xué)生的注意力保持較為 理想的穩(wěn)定狀態(tài),隨后學(xué)生的注意力開始分散.經(jīng)過實驗分析可知,學(xué)生的注意力指標(biāo)數(shù)隨時間(分鐘)的變化規(guī)律如圖所示(其中都為線段)
(1)分別求出線段和的函數(shù)解析式;
(2)開始上課后第分鐘時與第分鐘時相比較,何時學(xué)生的注意力更集中?
(3)一道數(shù)學(xué)競賽題,需要講分鐘,為了效果較好,要求學(xué)生的注意力指標(biāo)數(shù)最低達(dá)到那么經(jīng)過適當(dāng)安排,老師能否在學(xué)生注意力達(dá)到所需的狀態(tài)下講解完這道題目?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CD⊥AB,垂足為D,點(diǎn)E在BC上,EF⊥AB,垂足為F.
(1)CD與EF平行嗎?為什么?
(2)如果∠1=∠2,且∠3=120°,求∠ACB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過A(﹣1,0)、B(4,0)、C(0,2)三點(diǎn).
(1)求該二次函數(shù)的解析式;
(2)點(diǎn)D是該二次函數(shù)圖象上的一點(diǎn),且滿足∠DBA=∠CAO(O是坐標(biāo)原點(diǎn)),求點(diǎn)D的坐標(biāo);
(3)點(diǎn)P是該二次函數(shù)圖象上位于一象限上的一動點(diǎn),連接PA分別交BC,y軸與點(diǎn)E、F,若△PEB、△CEF的面積分別為S1、S2 , 求S1﹣S2的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△DEC中,AB=DE.若添加條件后使得△ABC≌△DEC,則在下列條件中,不能添加的是( )
A. BC=EC,∠B=∠E B. BC=EC,AC=DC
C. ∠B=∠E,∠A=∠D D. BC=EC,∠A=∠D
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC,垂足為E.若線段AE=2,則四邊形ABCD的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,A(a,0),B(0,2)
(1)點(diǎn)(k+1,2k﹣5)關(guān)于x軸的對稱點(diǎn)在第一象限,a為實數(shù)k的范圍內(nèi)的最大整數(shù),求A點(diǎn)的坐標(biāo)及△AOB的面積;
(2)在(1)的條件下如圖1,點(diǎn)P是第一象限內(nèi)的點(diǎn),且△ABP是以AB為腰的等腰直角三角形,請直接寫出P點(diǎn)坐標(biāo);
(3)在(1)的條件下,如圖2,以AB、OB的作等邊△ABC和等邊△OBD,連接AD、OC交于E點(diǎn),連接BE.
①求證:EB平分∠CED;
②M點(diǎn)是y軸上一動點(diǎn),求AM+CM最小時點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正比例函數(shù)的圖像與一次函數(shù)的圖像交于點(diǎn),一次函數(shù)的圖像經(jīng)過點(diǎn),與軸的交點(diǎn)為,與軸的交點(diǎn)為.
(1)求一次函數(shù)的表達(dá)式;
(2)二元一次方程組的解為________________;
(3)當(dāng)與同時成立時,的取值范圍為__________;
(4)求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com