【題目】如圖,已知ABC,∠A60°,AB6AC4

1)用尺規(guī)作ABC的外接圓O;

2)求ABC的外接圓O的半徑;

3)求扇形BOC的面積.

【答案】1)見解析;(2;(3

【解析】

1)分別作出線段BC,線段AC的垂直平分線EF,MN交于點O,以O為圓心,OB為半徑作⊙O即可.

2)連接OB,OC,作CHABH.解直角三角形求出BC,即可解決問題.

3)利用扇形的面積公式計算即可.

1)如圖⊙O即為所求.

2)連接OB,OC,作CHABH

RtACH中,∵∠AHC=90°,AC=4,∠A=60°,

∴∠ACH=30°,

AHAC=2CHAH=2,

AB=6,

BH=4

BC2,

∵∠BOC=2A=120°,OB=OC,OFBC,

BF=CF,∠COFBOC=60°,

OC

3S扇形OBC

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】隨著人們生活水平的提高,短途旅行日趨火爆.我市某旅行社推出遼陽葫蘆島海濱觀光一日游項目,團隊人均報名費用y(元)與團隊報名人數(shù)x(人)之間的函數(shù)關(guān)系如圖所示,旅行社規(guī)定團隊人均報名費用不能低于88.旅行社收到的團隊總報名費用為w(元).

(1)直接寫出當x≥20時,yx之間的函數(shù)關(guān)系式及自變量x的取值范圍;

(2)兒童節(jié)當天旅行社收到某個團隊的總報名費為3000元,報名旅游的人數(shù)是多少?

(3)當一個團隊有多少人報名時,旅行社收到的總報名費最多?最多總報名費是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以AB為直徑作半圓O,點C是半圓上一點,∠ABC的平分線交OEDBE延長線上一點,且DEFE

1)求證:ADO切線;

2)若AB20,tanEBA,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,自左至右,第1個圖由1個正六邊形、6個正方形和6個等邊三角形組成第2個圖由2個正六邊形、11個正方形和10個等邊三角形組成;第3個圖由3個正六邊形、16個正方形和14個等邊三角形組成;按照此規(guī)律,第個圖中正方形和等邊三角形的個數(shù)之和為 個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+c的圖象與x軸相交于A、B兩點,C(m,﹣3)是圖象上的一點,且ACBC,則a的值為(

A.2B.C.3D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是小明設(shè)計的“過直線外一點作這條直線的平行線”的尺規(guī)作圖過程.

已知:如圖1,直線BC及直線BC外一點P

求作:直線PE,使得PEBC

作法:如圖2

在直線BC上取一點A,連接PA;

作∠PAC的平分線AD;

以點P為圓心,PA長為半徑畫弧,交射線AD于點E;

作直線PE

所以直線PE就是所求作的直線.根據(jù)小明設(shè)計的尺規(guī)作圖過程.

1)使用直尺和圓規(guī),補全圖形(保留作圖痕跡);

2)完成下面的證明.

證明:∵AD平分∠PAC,

∴∠PAD=∠CAD

PAPE,

∴∠PAD   ,

∴∠PEA   ,

PEBC.(   )(填推理依據(jù)).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線ymx2+m3x3m0)與x軸交于A、B兩點(點A在點B左側(cè)),與y軸交于點C,AB4,點D為拋物線的頂點.

1)求點A和頂點D的坐標;

2)將點D向左平移4個單位長度,得到點E,求直線BE的表達式;

3)若拋物線yax26與線段DE恰有一個公共點,結(jié)合函數(shù)圖象,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】撫順某中學為了解八年級學生的體能狀況,從八年級學生中隨機抽取部分學生進行體能測試,測試結(jié)果分為AB,C,D四個等級.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:

1)本次抽樣調(diào)查共抽取了多少名學生?

2)求測試結(jié)果為C等級的學生數(shù),并補全條形圖;

3)若該中學八年級共有700名學生,請你估計該中學八年級學生中體能測試結(jié)果為D等級的學生有多少名?

4)若從體能為A等級的2名男生2名女生中隨機的抽取2名學生,做為該校培養(yǎng)運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某科技有限公司用萬元作為新產(chǎn)品的研發(fā)費用,成功研制出了一種市場急需的電子產(chǎn)品,已于當年投人生產(chǎn)并進行銷售.已知生產(chǎn)這種電子產(chǎn)品的成本為元/件,在銷售過程中發(fā)現(xiàn):每年的年銷售量(萬件)與銷售價格(元/件)的關(guān)系如圖所示,其中為反比例函數(shù)圖象的一部分,為一次函數(shù)圖象的一部分.設(shè)公司銷售這種電子產(chǎn)品的年利潤為(萬元).(注意:第一年年利潤=電子產(chǎn)品銷售收人電子產(chǎn)品生產(chǎn)成本研發(fā)費用)

(1)分別寫出圖中段、(萬件)與(元/件)之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(2)求出第一年這種電子產(chǎn)品的年利潤(萬元)與(元/件)之間的函數(shù)關(guān)系式;

(3)求該公司第一年年利潤的最大值, 并說明利潤最大時是盈利還是虧損,盈利或虧損多少萬元?

查看答案和解析>>

同步練習冊答案