分析 (1)分別利用角平分線的性質(zhì)和平行線的判定,求得△DBP和△ECP為等腰三角形,由等腰三角形的性質(zhì)得BD=PD,CE=PE,那么△PDE的周長就轉(zhuǎn)化為BC邊的長,即為8cm.
(2)根據(jù)三角形內(nèi)角和定理和角平分線的性質(zhì)即可求得.
解答 解:(1)∵BP、CP分別是∠ABC和∠ACB的角平分線,
∴∠ABP=∠PBD,∠ACP=∠PCE,
∵PD∥AB,PE∥AC,
∴∠ABP=∠BPD,∠ACP=∠CPE,
∴∠PBD=∠BPD,∠PCE=∠CPE,
∴BD=PD,CE=PE,
∴△PDE的周長=PD+DE+PE=BD+DE+EC=BC=8cm.
(2)∵∠A=50°,
∴∠ABC+∠ACB=130°,
∴$\frac{1}{2}$∠ABC+$\frac{1}{2}$∠ACB=65°,
∵∠PBC=$\frac{1}{2}$∠ABC,∠PCB=$\frac{1}{2}$∠ACB,
∴∠PBC+∠PCB=65°,
∴∠BPC=180°-65°=115°.
點(diǎn)評 此題主要考查了平行線的判定,內(nèi)角和定理,角平分線的性質(zhì)及等腰三角形的性質(zhì)等知識點(diǎn).本題的關(guān)鍵是將△PDE的周長就轉(zhuǎn)化為BC邊的長.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 0<t<4 | B. | 0≤t<4 | C. | 0<t<1 | D. | t≥0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 11 | B. | 14 | C. | 18 | D. | 19 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,6) | B. | (-4,-2) | C. | (-2,6) | D. | (-2,-2) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 35和53 | B. | -32和(-3)2 | C. | -53和(-5)3 | D. | (-$\frac{2}{3}$)2和(-$\frac{3}{2}$)2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com