【題目】在一次數(shù)學(xué)活動(dòng)課中,某數(shù)學(xué)小組探究求環(huán)形花壇(如圖所示)面積的方法,現(xiàn)有以下工具;①卷尺;②直棒EF;T型尺(CD所在的直線垂直平分線段AB).

(1)在圖1中,請(qǐng)你畫出用T形尺找大圓圓心的示意圖(保留畫圖痕跡,不寫畫法);

(2)如圖2,小華說:我只用一根直棒和一個(gè)卷尺就可以求出環(huán)形花壇的面積,具體做法如下:

將直棒放置到與小圓相切,用卷尺量出此時(shí)直棒與大圓兩交點(diǎn)M,N之間的距離,就可求出環(huán)形花壇的面積如果測(cè)得MN=10m,請(qǐng)你求出這個(gè)環(huán)形花壇的面積.

【答案】(1)如圖見解析;(2)25π.

【解析】

(1)直線CDC′D′的交點(diǎn)即為所求的點(diǎn)O.

(2)設(shè)切點(diǎn)為C,連接OM,OC.旅游勾股定理即可解決問題.

(1)如圖點(diǎn)O即為所求;

(2)設(shè)切點(diǎn)為C,連接OM,OC.

MN是切線,

OCMN,

CM=CN=5,

OM2﹣OC2=CM2=25,

S圓環(huán)=πOM2﹣πOC2=25π.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)E,F(xiàn),G分別是等邊三角形ABC三邊AB,BC,CA上的動(dòng)點(diǎn),且始終保持AE=BF=CG,設(shè)EFG的面積為y,AE的長為x,y關(guān)于x的函數(shù)圖象大致為圖2所示,則等邊三角形ABC的邊長為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,∠1+ 2=180° 以∠A= D.求證:AB//CD.(在每步證明過程后面注明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了解學(xué)生到校交通方式情況,隨機(jī)抽取各年級(jí)部分學(xué)生就“上下學(xué)交通方式”進(jìn)行問卷調(diào)查,調(diào)查分為“A:騎自行車;B:步行;C:坐公交車;D:其他”四種情況,并根據(jù)調(diào)查結(jié)果繪制出部分條形統(tǒng)計(jì)圖(如圖①)和部分扇形統(tǒng)計(jì)圖(如圖②),請(qǐng)根據(jù)圖中的信息,解答下列問題.

(1)本次調(diào)查共抽取 名學(xué)生;

(2)求出扇形統(tǒng)計(jì)圖中“C”所對(duì)扇形的圓心角的度數(shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)若該中學(xué)共有學(xué)生3000人,估計(jì)有多少學(xué)生在上下學(xué)交通方式中選擇坐公交車?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c(a>0)與x軸相交于點(diǎn)A(﹣1,0)和點(diǎn)B,與y軸交于點(diǎn)C,對(duì)稱軸為直線x=1.

(1)求點(diǎn)C的坐標(biāo)(用含a的代數(shù)式表示);

(2)聯(lián)結(jié)AC、BC,若△ABC的面積為6,求此拋物線的表達(dá)式;

(3)在第(2)小題的條件下,點(diǎn)Q為x軸正半軸上一點(diǎn),點(diǎn)G與點(diǎn)C,點(diǎn)F與點(diǎn)A關(guān)于點(diǎn)Q成中心對(duì)稱,當(dāng)△CGF為直角三角形時(shí),求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AD是高,CE是中線,DG垂直平分CE連接DE

1)求證:DCBE;

2)若∠AEC72°,求∠BCE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用若干個(gè)形狀、大小完全相同的矩形紙片圍成正方形,4個(gè)矩形紙片圍成如圖①所示的正方形,其陰影部分的面積為12;8個(gè)矩形紙片圍成如圖②所示的正方形,其陰影部分的面積為8;12個(gè)矩形紙片圍成如圖③所示的正方形,其陰影部分的面積為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,M,N分別是CD,BC的中點(diǎn),且AMCD,ANBC。

(1)求證:∠BAD=2MAN;

(2)連接BD,若∠MAN=70°,DBC=40°,求∠ADC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=-x2+x+x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),y軸交于點(diǎn)C.

(1)求點(diǎn)A,B,C的坐標(biāo);

(2)若該拋物線的頂點(diǎn)是點(diǎn)D,求四邊形OCDB的面積;

(3)已知點(diǎn)P是該拋物線對(duì)稱軸的一點(diǎn),若以點(diǎn)P,O,D為頂點(diǎn)的三角形是等腰三角形,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).(不用說理)

查看答案和解析>>

同步練習(xí)冊(cè)答案