考點(diǎn):方差,算術(shù)平均數(shù)
專題:
分析:根據(jù)平均數(shù)公式與方差公式即可求解.
解答:解:∵x
1,x
2,x
3,x
4,x
5的平均數(shù)是3,
∴
( x
1+x
2+x
3+x
4+x
5)=3,
∴2x
1,2x
2,2x
3,2x
4,2x
5的平均數(shù)是6,
[2x
1+2x
2+2x
3-1+2x
4-1+2x
5-1],
=2×
( x
1+x
2+x
3+x
4+x
5)=6.
∵數(shù)據(jù)x
1,x
2,x
3,x
4,x
5的平均數(shù)是,3,方差是2,
∴
[(x
1-3)
2+(x
2-3)
2+[(x
3-3)
2+(x
4-3)
2+(x
5-3)
2]=2①;
方差=
[(2x
1-6)
2+(2x
2-6)
2+(2x
3-6)
2+(2x
4-6)
2+(2x
5-6)
2]
=
[4(x
1-3)
2+4(x
2-3)
2+4(x
3-3)
2+4(x
4-3)
2+4(x
5-3)
2]
=
×4[(x
1-3)
2+(x
2-3)
2+(x
3-3)
2+(x
4-3)
2+(x
5-3)
2]②
把①代入②得,方差是:2×4=8.
故答案為:6;8.
點(diǎn)評(píng):本題考查了平均數(shù)的計(jì)算公式和方差的定義,它反映了一組數(shù)據(jù)的波動(dòng)大小,方差越大,波動(dòng)性越大,反之也成立.