【題目】一名足球守門員練習(xí)折返跑,從球門的位置出發(fā),向前記作正數(shù),返回記作負(fù)數(shù),他的記錄如下(單位:米):
+6 | - 5 | +9 | - 10 | +13 | - 9 | - 4. |
(1)守門員是否回到了原來的位置?
(2)守門員離開球門的位置最遠(yuǎn)是多少?
(3)守門員一共走了多少路程?
【答案】(1)回到了原來的位置;(2)13米;(3)56米.
【解析】
(1)只需將所有數(shù)加起來,看其和是否為0即可;
(2)計(jì)算每一次跑后的數(shù)據(jù),絕對值最大的即為所求;
(3)將所有絕對值相加即可.
解:(1)根據(jù)題意得:6-5+9-10+13-9-4=0.
答:回到了原來的位置.
(2)第一次離開6米,第二次離開6-5=1米,第三次離開1+9=10米,第四次離開10-10=0米,第五次離開0+13=13米,第六次離開13-9=4米,第七次離開4-4=0米,
則守門員離開守門的位置最遠(yuǎn)是13米;
(3)總路程= =56米.
故答案為:(1)回到了原來的位置;(2)13米;(3)56米.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,DA⊥AB,DE平分∠ADC,CE平分∠BCD,且∠1+∠2=90°.試猜想BC與AB有怎樣的位置關(guān)系,并說明其理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,O點(diǎn)在BC邊上,∠BAC的平分線交⊙O于點(diǎn)D,連接BD、CD,過點(diǎn)D作BC的平行線,與AB的延長線相交于點(diǎn)P.
(1)求證:PD是⊙O的切線;
(2)求證:△PBD∽△DCA;
(3)當(dāng)AB=6,AC=8時,求線段PB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了提高學(xué)生閱讀能力,我區(qū)某校倡議八年級學(xué)生利用雙休日加強(qiáng)課外閱讀,為了解同學(xué)們閱讀的情況,學(xué)校隨機(jī)抽查了部分同學(xué)周末閱讀時間,并且得到數(shù)據(jù)繪制了不完整的統(tǒng)計(jì)圖,根據(jù)圖中信息回答下列問題:
(1)將條形統(tǒng)計(jì)圖補(bǔ)充完整;被調(diào)查的學(xué)生周末閱讀時間眾數(shù)是多少小時,中位數(shù)是多少小時;
(2)計(jì)算被調(diào)查學(xué)生閱讀時間的平均數(shù);
(3)該校八年級共有500人,試估計(jì)周末閱讀時間不低于1.5小時的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)是正方形對角線上一動點(diǎn),點(diǎn)在射線上,且,連接,為中點(diǎn).
(1)如圖1,當(dāng)點(diǎn)在線段上時,試猜想與的數(shù)量關(guān)系和位置關(guān)系,并說明理由;
(2)如圖2,當(dāng)點(diǎn)在線段上時,(1)中的猜想還成立嗎?請說明理由;
(3)如圖3,當(dāng)點(diǎn)在的延長線上時,請你在圖3中畫出相應(yīng)的圖形,并判斷(1)中的猜想是否成立?若成立,請直接寫出結(jié)論;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為坐標(biāo)原點(diǎn),點(diǎn)B在軸的正半軸上,四邊形OACB是平行四邊形, ,反比例函數(shù)在第一象限內(nèi)的圖象經(jīng)過點(diǎn)A,與BC交于點(diǎn)F.若點(diǎn)F為BC的中點(diǎn),且△AOF的面積S=12,則點(diǎn)C的坐標(biāo)為(_____,_____).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的正方形組成的網(wǎng)格中,△AOB的頂點(diǎn)均在格點(diǎn)上,其中點(diǎn)A(5,4),B(1,3),將△AOB繞點(diǎn)O逆時針旋轉(zhuǎn)90°后得到△A1OB1.
(1)畫出△A1OB1;
(2)求在旋轉(zhuǎn)過程中線段AB、BO掃過的圖形的面積之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某蘋果生產(chǎn)基地,用30名工人進(jìn)行采摘或加工蘋果 ,每名工人只能做其中一項(xiàng)工作.蘋果的銷售方式有兩種:一種是可以直接出售;另一種是可以將采摘的蘋果加工成罐頭出售.直接出售每噸獲利4 000元;加工成罐頭出售每噸獲利10 000元.采摘的工人每人可采摘蘋果0.4噸;加工罐頭的工人每人可加工0.3噸.設(shè)有x名工人進(jìn)行蘋果采摘,全部售出后,總利潤為y元.
(1)求y與x的函數(shù)關(guān)系式;
(2)如何分配工人才能獲利最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在△ABC中,∠C=90°,AC=BC,過點(diǎn)C在△ABC外作直線MN,AM⊥MN于M,BN⊥MN于N.
(1)MN=AM+BN成立嗎?為什么?
(2)若過點(diǎn)C在△ABC內(nèi)作直線MN,AM⊥MN于M,BN⊥MN于N,則AM、BN與MN之間有什么關(guān)系?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com