分析 (1)先把點(diǎn)B代入y=x+m,求得m的值,求得C的坐標(biāo),然后根據(jù)待定系數(shù)法即可求得拋物線的解析式;
(2)設(shè)直線BC與對(duì)稱軸x=-1的交點(diǎn)為M,則此時(shí)MA+MC的值最小.把x=-1代入直線y=x+3得y的值,即可求出點(diǎn)M坐標(biāo);
(3)設(shè)P(-1,t),又因?yàn)锽(-3,0),C(0,3),所以可得BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,再分三種情況分別討論求出符合題意t值,即可求出點(diǎn)P的坐標(biāo).
解答 解:(1)把B(-3,0)代入y=x+m,
得-3+m=0,m=3,
∴直線的解析式為y=x+3;
∴點(diǎn)C的坐標(biāo)為(0,3),
∵OC=3OA,
∴點(diǎn)A的坐標(biāo)為(1,0),
∴$\left\{\begin{array}{l}{a+b+c=0}\\{9a-3b+c=0}\\{c=3}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=-1}\\{b=-2}\\{c=3}\end{array}\right.$,
∴拋物線的解析式為y=-x2-2x+3;
(2)∵y=-x2-2x+3=-(x+1)2+4,
∴對(duì)稱軸是直線x=-1,
設(shè)直線BC與對(duì)稱軸x=-1的交點(diǎn)為M,則此時(shí)MA+MC的值最。
把x=-1代入直線y=x+3得,y=2,
∴M(-1,2),
即當(dāng)點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小時(shí)M的坐標(biāo)為(-1,2);
(3)設(shè)P(-1,t),又∵B(-3,0),C(0,3),
∴BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,
①若點(diǎn)B為直角頂點(diǎn),則BC2+PB2=PC2
即:18+4+t2=t2-6t+10解之得:t=-2;
②若點(diǎn)C為直角頂點(diǎn),則BC2+PC2=PB2
即:18+t2-6t+10=4+t2解之得:t=4,
③若點(diǎn)P為直角頂點(diǎn),則PB2+PC2=BC2
即:4+t2+t2-6t+10=18解之得:t1=$\frac{3+\sqrt{17}}{2}$,t2=$\frac{3-\sqrt{17}}{2}$;
綜上所述P的坐標(biāo)為(-1,-2)或(-1,4)或(-1,$\frac{3+\sqrt{17}}{2}$) 或(-1,$\frac{3-\sqrt{17}}{3}$).
點(diǎn)評(píng) 本題綜合考查了二次函數(shù)的圖象與性質(zhì)、待定系數(shù)法求函數(shù)(二次函數(shù)和一次函數(shù))的解析式、利用軸對(duì)稱性質(zhì)確定線段的最小長(zhǎng)度、難度不是很大,是一道不錯(cuò)的中考?jí)狠S題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ③④ | C. | ②④ | D. | ①③ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 有兩個(gè)不相等的實(shí)數(shù)根 | B. | 有兩個(gè)相等的實(shí)數(shù)根 | ||
C. | 無實(shí)數(shù)根 | D. | 無法確定 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | y=-$\frac{3}{x}$ | B. | y=$\frac{3}{x}$ | C. | y=$\frac{6}{x}$ | D. | y=-$\frac{6}{x}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com