【題目】如圖,在中,AB=AC,AD平分∠BAC交BC于點D,在線段AD上任取一點P(點A除外),過點P作EF∥AB.分別交AC、BC于點E和點F,作PQ∥AC,交AB于點Q,連接QE.
(1)求證:四邊形AEPQ為菱形:
(2)當(dāng)點P在線段EF上的什么位置時,菱形AEPQ的面積為四邊形EFBQ面積的一半?請說明理
【答案】(1)見解析;(2)P為EF中點時,S菱形AEPQ=12S四邊形EFBQ,理由見解析.
【解析】
(1)先證出四邊形AEPQ為平行四邊形,關(guān)鍵是找一組鄰邊相等,由AD平分∠BAC和PE∥AQ可證∠EAP=∠EPA,得出AE=EP,即可得出結(jié)論;
(2)S菱形AEPQ=EPh,S平行四邊形EFBQ=EFh,若菱形AEPQ的面積為四邊形EFBQ面積的一半,則EP=EF,因此P為EF中點時,S菱形AEPQ=S四邊形EFBQ.
(1)證明:∵EF∥AB,PQ∥AC,
∴四邊形AEPQ為平行四邊形.
∵AB=AC,AD平分∠CAB,
∴∠CAD=∠BAD,
∵∠BAD=∠EPA,
∴∠CAD=∠EPA,
∴EA=EP,
∴四邊形AEPQ為菱形.
(2)P為EF中點時,S菱形AEPQ=S四邊形EFBQ
∵四邊形AEPQ為菱形,
∴AD⊥EQ,
∵AD⊥BC,
∴EQ∥BC,
又∵EF∥AB,
∴四邊形EFBQ為平行四邊形.
作EN⊥AB于N,如圖所示:
則S菱形AEPQ=EPEN=EFEN=S四邊形EFBQ
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了提高學(xué)生書寫漢字的能力,增強保護漢子的意識,某校舉辦了首屆“漢字聽寫大賽”,學(xué)生經(jīng)選拔后進入決賽,測試同時聽寫100個漢字,每正確聽寫出一個漢字得1分,本次決賽,學(xué)生成績?yōu)?/span>(分),且,將其按分?jǐn)?shù)段分為五組,繪制出以下不完整表格:
組別 | 成績(分) | 頻數(shù)(人數(shù)) | 頻率 |
一 | 2 | 0.04 | |
二 | 10 | 0.2 | |
三 | 14 | b | |
四 | a | 0.32 | |
五 | 8 | 0.16 |
請根據(jù)表格提供的信息,解答以下問題:
(1)本次決賽共有 名學(xué)生參加;
(2)直接寫出表中a= ,b= ;
(3)請補全下面相應(yīng)的頻數(shù)分布直方圖;
(4)若決賽成績不低于80分為優(yōu)秀,則本次大賽的優(yōu)秀率為 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知中,厘米,、分別從點、點同時出發(fā),沿三角形的邊運動,已知點的速度是1厘米/秒的速度,點的速度是2厘米/秒,當(dāng)點第一次到達點時,、同時停止運動.
(1)、同時運動幾秒后,、兩點重合?
(2)、同時運動幾秒后,可得等邊三角形?
(3)、在邊上運動時,能否得到以為底邊的等腰,如果存在,請求出此時、運動的時間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,延長AD到E,使DE=AD,連接EB,EC,DB.添加一個條件,不能使四邊形DBCE成為矩形的是( )
(A)AB=BE (B)BE⊥DC (C)∠ADB=90° (D)CE⊥DE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,平分,交于點E,平分,交于點F,與交于點P,連結(jié),.
(1)求證:四邊形是菱形.
(2)若,,,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是矩形ABCD的邊上一動點,矩形兩邊長AB、BC長分別為15和20,那么P到矩形兩條對角線AC和BD的距離之和是( 。
A.6B.12C.24D.不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的一元二次方程有兩個實數(shù)根.
若為正整數(shù),求此方程的根.
設(shè)此方程的兩個實數(shù)根為、,若,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象過兩點.
(1)求直線的函數(shù)表達式
(2)直線交軸于點為直線上一動點
①求的最小值;
②是直線上任意一點,為直線上另一動點,若是以為直角邊長的等腰直角三角形,求點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,對稱軸為x=,且經(jīng)過點(2,0),有下列說法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是拋物線上的兩點,則y1=y2.上述說法正確的是( )
A.①②④ B.③④ C.①③④ D.①②
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com