【題目】某商場(chǎng)出售一批進(jìn)價(jià)為每個(gè)2元的筆記本,在市場(chǎng)營(yíng)銷(xiāo)中發(fā)現(xiàn)此商品的日銷(xiāo)售單價(jià)x(元)與日銷(xiāo)售量y(個(gè))之間有如下關(guān)系:
(1)根據(jù)表中數(shù)據(jù)在平面直角坐標(biāo)系中描出實(shí)數(shù)x,y的對(duì)應(yīng)點(diǎn),用平滑曲線連接這些點(diǎn),并觀察所得的圖像,猜測(cè)y與x之間的函數(shù)關(guān)系,并求出該函數(shù)關(guān)系式:

x(元)

3

4

5

6

y(個(gè))

20

15

12

10


(2)設(shè)經(jīng)營(yíng)此筆記本的日銷(xiāo)售利潤(rùn)為w元,試求出w與x之間的函數(shù)關(guān)系式;
(3)當(dāng)日銷(xiāo)售單價(jià)為8元時(shí),求日銷(xiāo)售利潤(rùn)是多少元?

【答案】
(1)解:依照題意,畫(huà)出函數(shù)圖像,如圖所示.

猜測(cè)y是x的反比例函數(shù),設(shè)y=

將點(diǎn)(3,20)代入y= ,

20= ,解得:k=60.

驗(yàn)證:把點(diǎn)(4,15)、(5,12)、(6,10)代入y= 都適合,

∴y是x的反比例函數(shù),y= (x>0).


(2)解:根據(jù)題意可知:w=(x﹣2)y,

∵y= ,

∴w= (x>0).


(3)解:當(dāng)x=8時(shí),w= = =45.

∴當(dāng)日銷(xiāo)售單價(jià)為8元時(shí),日銷(xiāo)售利潤(rùn)是45元.


【解析】(1)描點(diǎn)、用平滑曲線連接這些點(diǎn)即可得出函數(shù)圖像,觀察函數(shù)圖像猜測(cè)y是x的反比例函數(shù),設(shè)y= ,代入點(diǎn)(3,20)即可求出k值,再將其余三點(diǎn)坐標(biāo)代入其中驗(yàn)證后即可得出函數(shù)關(guān)系式;(2)根據(jù)總利潤(rùn)=每本筆記本的利潤(rùn)×銷(xiāo)售數(shù)量即可得出w關(guān)于x、y的函數(shù)關(guān)系式,將(1)得出的結(jié)論代入其內(nèi)即可得出w與x之間的函數(shù)關(guān)系式;(3)將x=8代入w= 中即可求出結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,點(diǎn)P在⊙O上,∠1=∠C.
(1)求證:CB∥PD;
(2)若BC=6,sin∠P= ,求AB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小紅認(rèn)為:當(dāng)b2﹣4ac≥0時(shí),一元二次方程ax2+bx+c=0(a≠0)的求根公式是 .請(qǐng)你舉出反例說(shuō)明小紅的結(jié)論是錯(cuò)誤的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=﹣ x+2 與x軸,y軸分別交于點(diǎn)A,點(diǎn)B,兩動(dòng)點(diǎn)D,E分別從點(diǎn)A,點(diǎn)B同時(shí)出發(fā)向點(diǎn)O運(yùn)動(dòng)(運(yùn)動(dòng)到點(diǎn)O停止),運(yùn)動(dòng)速度分別是1個(gè)單位長(zhǎng)度/秒和 個(gè)單位長(zhǎng)度/秒,設(shè)運(yùn)動(dòng)時(shí)間為t秒,以點(diǎn)A為頂點(diǎn)的拋物線經(jīng)過(guò)點(diǎn)E,過(guò)點(diǎn)E作x軸的平行線,與拋物線的另一個(gè)交點(diǎn)為點(diǎn)G,與AB相交于點(diǎn)F.

(1)求點(diǎn)A,點(diǎn)B的坐標(biāo);
(2)用含t的代數(shù)式分別表示EF和AF的長(zhǎng);
(3)當(dāng)四邊形ADEF為菱形時(shí),試判斷△AFG與△AGB是否相似,并說(shuō)明理由.
(4)是否存在t的值,使△AGF為直角三角形?若存在,求出這時(shí)拋物線的解析式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),菱形OABC的對(duì)角線OB在x軸上,頂點(diǎn)A在反比例函數(shù)y= 的圖像上,則菱形的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,半徑均為1個(gè)單位長(zhǎng)度的半圓O1、O2、O3 , …組成一條平滑的曲線,點(diǎn)P從原點(diǎn)O出發(fā),沿這條曲線向右運(yùn)動(dòng),速度為每秒 個(gè)單位長(zhǎng)度,則第2015秒時(shí),點(diǎn)P的坐標(biāo)是( )

A.(2014,0)
B.(2015,﹣1)
C.(2015,1)
D.(2016,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)B、C、D都在半徑為6的⊙O上,過(guò)點(diǎn)C作AC∥BD交OB的延長(zhǎng)線于點(diǎn)A,連接CD,已知∠CDB=∠OBD=30°.
(1)求證:AC是⊙O的切線;
(2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直徑為AB的⊙O交Rt△BCD的兩條直角邊BC、CD于點(diǎn)E、F,且 ,連接BF.

(1)求證:CD為⊙O的切線;
(2)當(dāng)CF=1且∠D=30°時(shí),求AD長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,AC是⊙O的直徑,BC是⊙O的弦,點(diǎn)P是⊙O外一點(diǎn),∠PBA=∠C.
(1)求證:PB是⊙O的切線.
(2)若OP∥BC,且OP=8,∠C=60°,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案