科目: 來源: 題型:
【題目】△ABC在直角坐標系內的位置如圖所示
(1)分別寫出點A,C的坐標:A: ,C: ;
(2)△ABC的周長為 ,面積為 ;
(3)請在這個坐標系內畫出△A1B1C1與△ABC關于x軸對稱.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正方形網格MNPQ中,每個小方格的邊長都相等,正方形ABCD的頂點在正方形MNPQ的4條邊的小方格頂點上.
(1)設正方形MNPQ網格內的每個小方格的邊長為1,求:
①△ABQ,△BCM,△CDN,△ADP的面積;
②正方形ABCD的面積.
(2)設MB=a,BQ=b,利用這個圖形中的直角三角形和正方形的面積關系,你能驗證已學過的哪一個數學公式或定理嗎?
查看答案和解析>>
科目: 來源: 題型:
【題目】[問題情境]勾股定理是一條古老的數學定理,它有很多種證明方法,我國漢代數學家趙爽根據弦圖,利用面積法進行證明.著名數學家華羅庚曾提出把“數形關系(勾股定理)”帶到其他星球,作為地球人與其他星球“人”進行第一次“談話”的語言.
[定理表述]請你根據圖(1)中的直角三角形敘述勾股定理(用文字及符號語言敘述).
[嘗試證明]以圖(1)中的直角三角形為基礎,可以構造出以a、b為底,以a+b為高的直角梯形(如圖(2)),請你利用圖(2)驗證勾股定理.
[知識拓展]利用圖(2)中的直角梯形,我們可以證明.其證明步驟如下:
∵BC=a+b,AD=________,
又∵在直角梯形ABCD中,有BC________AD(填大小關系),即________,
∴.
查看答案和解析>>
科目: 來源: 題型:
【題目】在一空曠場地上設計一落地為矩形ABCD的小屋,AB+BC=10m,拴住小狗的10m長的繩子一端固定在B點處,小狗在不能進入小屋內的條件下活動,其可以活動的區(qū)域面積為S(m2).
(1)如圖1,若BC=4m,則S=m2 .
(2)如圖2,現考慮在(1)中的矩形ABCD小屋的右側以CD為邊拓展一正△CDE區(qū)域,使之變成落地為五邊形ABCED的小屋,其他條件不變,則在BC的變化過程中,當S取得最小值時,邊BC的長為m.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,三角形ABC為一個電子跳蚤游戲盤,其中AB=8,AC=9,BC=10.如果電子跳蚤開始時在BC邊上的點P0處,BP0=4,第一步跳蚤從點P0處跳到AC邊上的點P1處,且CP1=CP0;第二步跳蚤從點P1處跳到AB邊上的點P2處,且AP1=AP2;第三步跳蚤從點P2處跳回到BC邊上的點P3處,且BP3=BP2……若跳蚤按上述規(guī)則跳下去,第n次的落點為Pn,則點P3與點P2019之間的距離為( )
A. 0 B. 1 C. 4 D. 5
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直角梯形AOCD的邊OC在x軸上,O為坐標原點,CD垂直于x軸,D(5,4),AD=2.若動點E、F同時從點O出發(fā),E點沿折線OA→AD→DC運動,到達C點時停止;F點沿OC運動,到達C點時停止,它們運動的速度都是每秒1個單位長度.設E運動x秒時,△EOF的面積為y(平方單位),則y關于x的函數圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】“中華人民共和國道路交通管理條例”規(guī)定:小汽車在城市街道上行駛速度不得超過70 km/h.如圖,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路對面車速檢測儀正前方30 m處,過了2 s后,測得小汽車與車速檢測儀間距離為50 m,這輛小汽車超速了嗎?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com