科目: 來源: 題型:
【題目】在平面直角坐標系中,一次函數y=kx+b(k,b都是常數,且k≠0)的圖象經過點(1,0)和(0,2).
(1)當﹣2<x≤3時,求y的取值范圍;
(2)已知點P(m,n)在該函數的圖象上,且m﹣n=4,求點P的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,己知△ABC,任取一點O,連AO,BO,CO,并取它們的中點D,E,F,得△DEF,則下列說法正確的個數是( ) ①△ABC與△DEF是位似圖形; ②△ABC與△DEF是相似圖形;
③△ABC與△DEF的周長比為1:2;④△ABC與△DEF的面積比為4:1.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC中,∠ABC的角平分線與∠ACB的外角∠ACD的平分線交于A1.
(1)當∠A為70°時,
∵∠ACD -∠ABD=∠____________
∴∠ACD -∠ABD=______________°
∵BA1、CA1是∠ABC的角平分線與∠ACB的外角∠ACD的平分線
∴∠A1CD -∠A1BD=(∠ACD-∠ABD)
∴∠A1=___________°;
(2)∠A1BC的角平分線與∠A1CD的角平分線交于A2,∠A2BC與A2CD的平分線交于A3,如此繼續(xù)下去可得A4、…、An,請寫出∠A與∠An 的數量關系____________;
(3)如圖2,四邊形ABCD中,∠F為∠ABC的角平分線及外角∠DCE的平分線所在的直線構成的角,若∠A+∠D=230度,則∠F= .
(4)如圖3,若E為BA延長線上一動點,連EC,∠AEC與∠ACE的角平分線交于Q,當E滑動時有下面兩個結論:①∠Q+∠A1的值為定值;②∠Q —∠A1的值為定值.
其中有且只有一個是正確的,請寫出正確的結論,并求出其值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知等腰Rt△ABC,∠BAC=90°,AB=AC,點D為△ABC內部一點,連接AD、BD、CD,點H為BD中點,連接AH,且∠BAH=∠ACD.
(1)如圖1,若∠ADB=90°,求證:∠DAH=45°;
(2)如圖2,若∠ADB<90°,(1)問中的結論是否成立,若成立,請證明;若不成立,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】有5張邊長為2的正方形紙片,4張邊長分別為2、3的矩形紙片,6張邊長為3的正方形紙片,從其中取出若干張紙片,且每種紙片至少取一張,把取出的這些紙片拼成一個正方形(原紙張進行無空隙、無重疊拼接),則拼成正方形的邊長最大為 ( )
A. 6B. 7C. 8D. 9
查看答案和解析>>
科目: 來源: 題型:
【題目】母親節(jié)前夕,某淘寶店主從廠家購進A、B兩種禮盒,已知A、B兩種禮盒的單價比為2:3,單價和為200元.
(1)求A、B兩種禮盒的單價分別是多少元?
(2)該店主購進這兩種禮盒恰好用去9600元,且購進A種禮盒最多36個,B種禮盒的數量不超過A種禮盒數量的2倍,共有幾種進貨方案?
(3)根據市場行情,銷售一個A種禮盒可獲利10元,銷售一個B種禮盒可獲利18元.為奉獻愛心,該店主決定每售出一個B種禮盒,為愛心公益基金捐款m元,每個A種禮盒的利潤不變,在(2)的條件下,要使禮盒全部售出后所有方案獲利相同,m值是多少?此時店主獲利多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著出行方式的多樣化,某地區(qū)打車有三種乘車方式,收費標準如下(假設打車的平均車速為30千米/小時):
網約出租車 | 網約順風車 | 網約專車 |
3千米以內:12元 | 1.5元/千米 | 2元/千米 |
超過3千米的部分:2.4元/千米 | 0.5元/分鐘 | 0.6元/分鐘 |
(如:乘坐6千米,耗時12分鐘,網約出租車的收費為:12+2.4×(6-3)=19.2(元);網約順風車的收費為:6×1.5+12×0.5=15(元);網約專車的收費為:6×2+12×0.6=19.2(元))
請據此信息解決如下問題:
(1)王老師乘車從縱棹園去汽車站,全程8千米,如果王老師乘坐網約出租車,需要支付的打車費用為______元;
(2)李校長乘車從縱掉園去生態(tài)園,乘坐網約順風車比乘坐網約出租車節(jié)省了2元.求從縱棹園去生態(tài)園的路程;
(3)網約專車為了和網約順風車競爭客戶,分別推出了優(yōu)惠方式:網約順風車對于乘車路程在5千米以上(含5千米)的客戶每次收費立減6元;網約專車打車車費一律七五折優(yōu)惠.對采用哪一種打車方式更合算提出你的建議.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c(a≠0)與x軸相交于A,B兩點,與y軸相交于點C,直線y=kx+n(k≠0)經過B,C兩點,已知A(1,0),C(0,3),且BC=5.
(1)分別求直線BC和拋物線的解析式(關系式);
(2)在拋物線的對稱軸上是否存在點P,使得以B,C,P三點為頂點的三角形是直角三角形?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀下面材料:小明遇到這樣一個問題:
如圖1,在△ABC中,∠B=2∠C,AD⊥BC于點D,求證:BC=AB+2BD.
小明利用條件AD⊥BC,在CD上截取DH=BD,如圖2,連接AH,既構造了等腰△ABH,又得到BH=2BD,從而命題得證。
(1)根據閱讀材料,證明:BC=AB+2BD;
(2)參考小明的方法,解決下面的問題:
如圖3,在△ABC中,∠BAC=90°,∠ABD=∠BCE,∠ABC=∠DCE,請?zhí)骄?/span>AD與BE的數量關系,并說明理由。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com