科目: 來源: 題型:
【題目】如圖,點E、F、G、H分別是四邊形ABCD的邊AB、BC、CD、DA的中點.
(1)如果圖中線段都可畫成有向線段,那么在這些有向線段所表示的向量中,與向量相等的向量是 ;
(2)設(shè)=,=,=.試用向量,或表示下列向量:= ;= .
(3)求作:.(請在原圖上作圖,不要求寫作法,但要寫出結(jié)論)
查看答案和解析>>
科目: 來源: 題型:
【題目】美麗的黃河宛如一條玉帶穿城而過,沿河兩岸的濱河路風(fēng)情線是蘭州最美的景觀之一.?dāng)?shù)學(xué)課外實踐活動中,小林在南濱河路上的A,B兩點處,利用測角儀分別對北岸的一觀景亭D進行了測量.如圖,測得∠DAC=45°,∠DBC=65°.若AB=132米,求觀景亭D到南濱河路AC的距離(結(jié)果精確到1米,參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.14).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,函數(shù)的圖象與函數(shù)(x>0)的圖象交于A(m,1),B(1,n)兩點.
(1)求k,m,n的值;
(2)利用圖象寫出當(dāng)x≥1時,和的大小關(guān)系.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知雙曲線:與拋物線:y=ax2+bx+c交于A(2,3)、B(m,2)、C(﹣3,n)三點.
(1)求雙曲線與拋物線的解析式;
(2)在平面直角坐標(biāo)系中描出點A、點B、點C,并求出△ABC的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】概念學(xué)習(xí)
規(guī)定:如果一個三角形的三個角分別等于另一個三角形的三個角,那么稱這兩個三角形互為“等角三角形”.
從三角形(不是等腰三角形)一個頂點引出一條射線與對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原來三角形是“等角三角形”,我們把這條線段叫做這個三角形的“等角分割線”.
理解概念
(1)如圖1,在Rt△ABC中,∠ACB=90°,CD⊥AB,請寫出圖中兩對“等角三角形”.
概念應(yīng)用
(2)如圖2,在△ABC中,CD為角平分線,∠A=40°,∠B=60°.求證:CD為△ABC的等角分割線.
(3)在△ABC中,∠A=42°,CD是△ABC的等角分割線,直接寫出∠ACB的度數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】知識鏈接:
“轉(zhuǎn)化、化歸思想”是數(shù)學(xué)學(xué)習(xí)中常用的一種探究新知、解決問題的基本的數(shù)學(xué)思想方法,通過“轉(zhuǎn)化、化歸”通常可以實現(xiàn)化未知為已知,化復(fù)雜為簡單,從而使問題得以解決.
(1)問題背景:已知:△ABC.試說明:∠A+∠B+∠C=180°.
問題解決:(填出依據(jù))
解:(1)如圖①,延長AB到E,過點B作BF∥AC.
∵BF∥AC(作圖)
∴∠1=∠C( )
∠2=∠A( )
∵∠2+∠ABC+∠1=180°(平角的定義)
∴∠A+∠ABC+∠C=180°(等量代換)
小結(jié)反思:本題通過添加適當(dāng)?shù)妮o助線,把三角形的三個角之和轉(zhuǎn)化成了一個平角,利用平角的定義,說明了數(shù)學(xué)上的一個重要結(jié)論“三角形的三個內(nèi)角和等于180°.”
(2)類比探究:請同學(xué)們參考圖②,模仿(1)的解決過程試說明“三角形的三個內(nèi)角和等于180°”
(3)拓展探究:如圖③,是一個五邊形,請直接寫出五邊形ABCDE的五個內(nèi)角之和∠A+∠B+∠C+∠D+∠E= .
查看答案和解析>>
科目: 來源: 題型:
【題目】探索規(guī)律:將連續(xù)的偶2,4,6,8,…,排成如表:
(1)請你求出十字框中的五個數(shù)的和;
(2)設(shè)中間的數(shù)為x,請你用含x的式子表示十字框中的五個數(shù)的和;
(3)若將十字框上下左右移動,可框住另外的五個數(shù),這五個數(shù)的和能等于2018嗎?如能,寫出這五個數(shù),如不能,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點A、B的坐標(biāo)分別是(0,3)、(﹣4,0),
(1)將△AOB繞點A逆時針旋轉(zhuǎn)90°得到△AEF,點O,B對應(yīng)點分別是E,F(xiàn),請在圖中畫出△AEF,并寫出E、F的坐標(biāo);
(2)以O點為位似中心,將△AEF作位似變換且縮小為原來的,在網(wǎng)格內(nèi)畫出一個符合條件的△A1E1F1.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線分別與x軸和y軸交于點A和點B.P是線段AB上一動點(不與A、B重合),過點P分別作PC⊥y軸于點C,PD⊥x軸于點D.設(shè)點P的橫坐標(biāo)為m.
(1)如圖1,求線段AB的長度;
(2)如圖2,當(dāng)時,求點P的坐標(biāo);
(3)如圖3,作直線OP,若直線OP的解析式為,求四邊形OCPD的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com